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Nonparametric Regression

Nonparametric regressionmodel
Yi = f0(Xi) + ξi

▶ X1, . . . , Xn ∼i.i.d. µ.
▶ ξ1, . . . , ξn ∼i.i.d. N(0, σ2 Id).
▶ ξ1:n is independent of X1:n.

The goal of the regression is to find the unknown function f0 using labeled data {(Xi, Yi)}n
i=1.

Least-squares regression
f0 = arg min

f measurable
L( f ) := E(X,Y)

[
(Y − f (X))2]

▶ The expectation is intractable.
▶ Minimization over the measurable function class is intractable.
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Empirical Risk Minimization

f̂n ∈ arg min
f∈F

L̂n( f ) :=
1
n

n

∑
i=1

(Yi − f (Xi))
2

Error decomposition

ES
[
∥ f̂n − f0∥2

2
]
≤ inf

f∈F
∥ f − f0∥L2(Ω)︸ ︷︷ ︸

Approximation error

+ES

[
sup
f∈F

(L( f )− L̂n( f ))
]

︸ ︷︷ ︸
Generalization error

Hypothesis class

Target 
function

Empirical risk 
minimizer

Generalization 
error (Variance)

Approximation 
error (Bias)

Population risk 
minimizer

Bias-Variance trade-off
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Deep Learning

Choose the hypothesis class as a deep neural network class.

A neural network ϕ : Rd → R is a function defined by

f (x) = TL(ρ(TL−1(· · · ρ(T0(x)) · · · ))), (DNN)

where the activation function ρ is applied component-wisely and Tℓ(x) = Aℓx + bℓ is an affine transformation
with Aℓ ∈ RNℓ+1×Nℓ and bℓ ∈ RNℓ for ℓ = 0, . . . , L. Then the ρ-activated deep neural network class Nρ(L, S, B)
is defined as

Nρ(L, S, B) =

{
f (x) has the form of (DNN) : ∑

0≤ℓ≤L+1
(∥Aℓ∥0 + ∥bℓ∥2) ≤ S, ∥ f ∥L∞(Rd) ≤ B

}
,

where L is called the depth of neural networks, S represents the number of non-zero parameters, and B is the
uniform bound of neural networks.
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Approximation error of DNN
▶ Approximation in Lp-norm

(Dmitry Yarotsky 2017, Zuowei Shen et al. 2019, Johannes Schmidt-Hieber 2020, Jianfeng Lu et al. 2020,
Yuling Jiao et al. 2023)

▶ Approximation in Sobolev norms
(Ingo Gühring et al. 2021, Chenguang Duan et al. 2022)

▶ Approximation with Lipschitz constraint
(Jian Huang et al. 2022, Yuling Jiao et al. 2023, Zhao Ding et al. 2024)

Generalization error of DNN
Empirical process + Sample complexity of DNN
▶ (Local) Rademacher complexity (Peter L. Bartlett et al. 2002, 2005)
▶ Size-independent Rademacher complexity of DNN (Noah Golowich et al. 2018)
▶ VC-dimention bound for DNN (Martin Anthony et al. 1999, Peter L. Bartlett et al. 1998, 2019)
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Convergence of nonparametric regression

Suppose that f0 ∈ Hs(Ω), then the minimax optimal rate of en estimator f̂n is given as:

ES

[
∥ f̂n − f0∥2

L2(Ω)

]
= O

(
n− 2s

d+2s

)
.

The convergence in L2-norm canNOT imply the convergence of gradient.

▶ For example,

f̂n(x) =
sin(nx) log n

n
Lp
−→ 0, for each 1 ≤ p ≤ ∞.

However, f̂ ′n(x) = cos(nx) log n → +∞.

How can we simultaneously estimate both the regression function f0 and its gradient∇ f0?

Applications in inverse problems, nonparametric variable selection, generative learning ...

C. Duan (WHU) Semi-Supervised Deep Sobolev Regression July 11, 2025 7/26



Convergence of nonparametric regression

Suppose that f0 ∈ Hs(Ω), then the minimax optimal rate of en estimator f̂n is given as:

ES

[
∥ f̂n − f0∥2

L2(Ω)

]
= O

(
n− 2s

d+2s

)
.

The convergence in L2-norm canNOT imply the convergence of gradient.

▶ For example,

f̂n(x) =
sin(nx) log n

n
Lp
−→ 0, for each 1 ≤ p ≤ ∞.

However, f̂ ′n(x) = cos(nx) log n → +∞.

How can we simultaneously estimate both the regression function f0 and its gradient∇ f0?

Applications in inverse problems, nonparametric variable selection, generative learning ...

C. Duan (WHU) Semi-Supervised Deep Sobolev Regression July 11, 2025 7/26



Convergence of nonparametric regression

Suppose that f0 ∈ Hs(Ω), then the minimax optimal rate of en estimator f̂n is given as:

ES

[
∥ f̂n − f0∥2

L2(Ω)

]
= O

(
n− 2s

d+2s

)
.

The convergence in L2-norm canNOT imply the convergence of gradient.

▶ For example,

f̂n(x) =
sin(nx) log n

n
Lp
−→ 0, for each 1 ≤ p ≤ ∞.

However, f̂ ′n(x) = cos(nx) log n → +∞.

How can we simultaneously estimate both the regression function f0 and its gradient∇ f0?

Applications in inverse problems, nonparametric variable selection, generative learning ...

C. Duan (WHU) Semi-Supervised Deep Sobolev Regression July 11, 2025 7/26



Outline

1 Introduction and Background

2 Sobolev-Penalized Regression

3 Semi-Supervised Deep Sobolev Regression

4 Applications and Numerical Experiments
Derivative Estimations
Nonparametric Variable Selection
Inverse Problems

5 Conclusions

C. Duan (WHU) Semi-Supervised Deep Sobolev Regression July 11, 2025 8/26



Sobolev-Penalized Regression

Least-squares regression with gradient penalty

Lλ( f ) := E(X,Y)
[
(Y − f (X))2]︸ ︷︷ ︸

least-squares

+ λ| f |2H1(Ω)︸ ︷︷ ︸
gradient penalty

= ∥ f − f0∥2
L2(Ω) + σ2 + λ| f |H1(Ω).

Variational problem

Find f λ ∈ H1(Ω), such that δLλ( f λ, v) = 0 for each v ∈ H1(Ω), that is,

( f λ − f0, v)L2(Ω) + λ(∇( f λ − f0),∇v)L2(Ω) = −λ(∇ f0,∇v)L2(Ω).

Notice that f λ is the solution to the elliptic equation{
−λ∆ f + f = f0, in Ω,

∇ f · n = 0, on ∂Ω.
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Substituting v = f λ − f0 into δLλ( f λ, v) = 0 implies

interior L2 error︷ ︸︸ ︷
∥ f λ − f0∥2

L2(Ω) +λ

interior gradient error︷ ︸︸ ︷
| f λ − f0|2H1(Ω)

= λ(∆ f0, f0 − f λ)L2(Ω) ≤ λ∥∆ f0∥L2(Ω)∥ f λ − f0∥L2(Ω).

▶ Interior L2 error:
∥ f λ − f0∥2

L2(Ω) ≤ λ2∥∆ f0∥2
L2(Ω).

▶ Interior gradient error:
| f λ − f0|2H1(Ω) ≤ λ∥∆ f0∥2

L2(Ω).

The Sobolev-penalized regressor f λ is an estimator of f0 in both L2-norm and H1-semi-norm.
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Semi-Supervised Deep Sobolev Regression

Sobolev-Penalized Risk
Lλ( f ) := E(X,Y)

[
(Y − f (X))2]+ λ| f |2H1(Ω)

▶ The expectation is intractable. Monte Carlo Approximation
▶ Minimization over the measurable function class is intractable. Parameterization

Empirical Sobolev-Penalized Risk Minimization

f̂ λ
n,m ∈ arg min

f∈conv(F )

L̂λ
n,m( f ) =

1
n

n

∑
i=1

(Yi − f (Xi))
2 +

λ

m

m

∑
j=1

∥∇ f (Zj)∥2
2.

▶ Labeled data: (Xi, Yi) ∼i.i.d. P
▶ Unlabeled data: Zj ∼i.i.d. unif(Ω)

Semi-supervised framework
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Assumptions

▶ A1. Sub-Gaussian noise. The noise ξ is sub-Gaussian with mean 0 and finite variance proxy σ2.

▶ A2. Bounded hypothesis. There exists an absolute positive constant B0, such that supx∈Ω | f0(x)| ≤ B0.
Further, functions in hypothesis class F are also bounded, that is, supx∈Ω | f (x)| ≤ B0.

▶ A3. Bounded derivatives of hypothesis. There exists positive constants {B1,k}d
k=1, such that

supx∈Ω |Dk f0(x)| ≤ B1,k for 1 ≤ k ≤ d. Further, the first-order partial derivatives of functions in
hypothesis class F are also bounded, i.e., supx∈Ω |Dk f (x)| ≤ B1,k for each 1 ≤ k ≤ d and f ∈ F . Denote
by B2

1 := ∑d
k=1 B2

1,k.

▶ A4. Regularity of regression function. The regression function satisfies ∆ f0 ∈ L2(Ω) and ∇ f0 · n = 0
a.e. on ∂Ω, where n is the unit normal to the boundary.
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Error Decomposition

Oracle inequality

Under A1 to A4. Suppose n ≥ log N(B0δ,F , L2(D)) and m ≥ maxk log N(B1,kδ, DkF , L2(S)). Then

E
[
∥ f̂ λ

n,m − f0∥2
L2(Ω)

]
≲ βλ2 + εapp(F , λ) + εgen(F , n) + ε

reg
gen(∇F , m),

E
[
∥∇( f̂ λ

n,m − f0)∥2
L2(Ω)

]
≲ βλ + λ−1εapp(F , λ) + λ−1εgen(F , n) + λ−1ε

reg
gen(∇F , m),

where β = ∥∆ f0∥2
L2(Ω)

+ B2
1 . The approximation error εapp(F , λ), the generalization errors εgen(F , n)

and ε
reg
gen(∇F , m) are defined, respectively, as

εapp(F , λ) = inf
f∈F

{
∥ f − f0∥2

L2(Ω) + λ∥∇( f − f0)∥2
L2(Ω)

}
,

εgen(F , n) = (B2
0 + σ2)(log n) inf

δ>0

{(2 log N(B0δ,F , L2(D))

n

) 1
2
+ δ

}
,

ε
reg
gen(∇F , m) = B2

1 inf
δ>0

{
max

1≤k≤d

log N(B1,kδ, DkF , L2(S))

m
+ δ

}
.

C. Duan (WHU) Semi-Supervised Deep Sobolev Regression July 11, 2025 14/26



Approximation error

Let Ω ⊆ K ⊆ Rd be two bounded domain. Set the hypothesis class as a deep ReQU neural network
F = N (L, W, S) with L = O(log N) and S = O(Nd). Then for each ϕ ∈ Cs(K) with s ∈ N≥2, there
exists f ∈ F such that

∥ f − ϕ∥L2(Ω) ≤ CN−s∥ϕ∥Cs(K),

∥∇( f − ϕ)∥L2(Ω) ≤ CN−(s−1)∥ϕ∥Cs(K),

where C is a constant independent of N.

Generalization error

Suppose the activation function is piecewise-polynomial. Let D = {Xi}n
i=1 and S = {Zj}m

j=1. Then

log N(δ, N(L, S, B), L2(D)) ≲ LS log(S) log
(nB

δ

)
,

log N(δ, Dk N(L, S, B), L2(S)) ≲ L2S log(S) log
(mB

δ

)
.
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Approximation error
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Convergence Rate

Under A1 to A4. Let Ω ⊆ K ⊆ Rd be two bounded domain. Assume that f0 ∈ Cs(K) with s ∈ N≥2.
Set the hypothesis class as a deep ReQU neural network class F = N(L, W, S) with L = O(log n) and
S = O(n

d
d+4s ). Let λ = O(n− s

d+4s log2 n). Then

E
[
∥ f̂ λ

n,m − f0∥2
L2(Ω)

]
≤ O

(
n− 2s

d+4s log4 n
)
+O

(
n

d
d+4s log4 nm−1

)
,

E
[
∥∇( f̂ λ

n,m − f0)∥2
L2(Ω)

]
≤ O

(
n− s

d+4s log2 n
)
+O

(
n

d+s
d+4s log2 nm−1

)
.

Simultaneously estimate both the regression function f0 and its gradient ∇ f0.
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Derivative Estimations
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Nonparametric Variable Selection

▶ A5. Sparsity structure
There exists f ∗0 : Rd∗ → R (1 ≤ d∗ < d) such that for each x := (x1, . . . , xd) ∈ Rd,

f0(x1, . . . , xd) = f ∗0 (xj1 , . . . , xjd∗ ), {j1, . . . , jd∗} ⊆ [d].

The derivatives can indicate whether a variable is relevant to the output.

Relevant variable
▶ A variable k ∈ [d] is irrelevant for the function f with respect to Lebesgue measure on Ω, if

Dk f (X) = 0 almost surely,

and relevant otherwise. The set of relevant variables is defined as

I( f ) = {k ∈ [d] : ∥Dk f ∥L2(Ω) > 0}.
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Is f0 sparse? Convergence rate

E[∥ f̂ λ
n,m − f0∥2

L2(Ω)
] ✗ Õ(n− 2s

d+4s )

E[∥ f̂ λ
n,m − f0∥2

L2(Ω)
] ✓ Õ(n− 2s

d∗+4s )

E[∥∇( f̂ λ
n,m − f0)∥2

L2(Ω)
] ✗ Õ(n− s

d+4s )

E[∥∇( f̂ λ
n,m − f0)∥2

L2(Ω)
] ✓ Õ(n− 2s

d∗+4s )

Selection consistency

Under A1 to A5. It follows that
lim

n→∞
Pr

{
I( f0) = I( f̂ λ

n,m)
}
= 1,

where λ = O(n− s
d∗+4s log2 n), and m is sufficiently large.
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f0(x1, . . . , x20) =
3

∑
i=1

4

∑
j=i+1

xixj. sparse structure
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Inverse Source Problem

Elliptic equation with unknown source{
−∇ · (a(x)∇u(x)) + c(x)u = f (x), in Ω,

∇u · n = 0, on ∂Ω.

Measurementmodel

Y = S( f †)(X) + ξ.

▶ u† = S( f †) is the solution to the elliptic equation.
▶ X ∼ unif(Ω), and ξ ∼ subG(σ2) is the random noise independent of X.
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Recovering Procedure
▶ Sobolev-penalized regression using interior measurements

ûλ
n,m ∈ arg min

u∈conv(U )
L̂λ

n,m(u) =
1
n

n

∑
i=1

(Yi − u(Xi))
2 +

λ

m

m

∑
j=1

∥∇u(Zj)∥2
2.

▶ Interior position-measurement pairs: {(Xi , Yi)}n
i=1. expensive

▶ Positions variables Z1, . . . , Zm ∼i.i.d. unif(Ω) very cheap

▶ Recovering unknown source using gradient estimator
Find f̂ λ

n,m, such that for each v ∈ H1(Ω),

(a(x)∇ûλ
n,m,∇v)L2(Ω) + (c(x)ûλ

n,m, v)L2(Ω) = ( f̂ λ
n,m, v)L2(Ω).

Since ûλ
n,m ∈ H2(Ω), we find

f̂ λ
n,m = −∇ · (a(x)∇ûλ

n,m) + c(x)∇ûλ
n,m ∈ L2(Ω).
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n,m,∇v)L2(Ω) + (c(x)ûλ

n,m, v)L2(Ω) = ( f̂ λ
n,m, v)L2(Ω).

Since ûλ
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Convergence rate in weak norm

E
[
∥ f̂ λ

n,m − f †∥(H1(Ω))∗

]
≲ O

(
n− s

2(d+4s)
)

.
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Conclusions

▶ Simultaneously estimations of both the regression function and its gradient.
▶ Nonasymptotic convergence rate.
▶ Applications in nonparametric variable selection and inverse problems.

Reference: Zhao Ding, Chenguang Duan, Yuling Jiao, and Jerry Zhijian Yang. Semi-Supervised Deep Sobolev
Regression: Estimation and Variable Selection by ReQU Neural Network. IEEE Transactions on Information
Theory, 2025.

Thanks for your attention!
Homepage:
https://chenguangduan.github.io/
Google Scholar:
https://scholar.google.com/citations?user=RpmGgyMAAAAJ
Email: cgduan.math@gmail.com
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