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Semi-Supervised Deep Sobolev Regression:
Estimation and Variable Selection

by ReQU Neural Network
Zhao Ding , Chenguang Duan , Yuling Jiao, and Jerry Zhijian Yang

Abstract—We propose SDORE, a semi-supervised deep
Sobolev regressor, for the nonparametric estimation of the
underlying regression function and its gradient. SDORE employs
deep ReQU neural networks to minimize the empirical risk with
gradient norm regularization, allowing the approximation of the
regularization term by unlabeled data. Our study includes a
thorough analysis of the convergence rates of SDORE in L2-
norm, achieving the minimax optimality. Further, we establish
a convergence rate for the associated plug-in gradient estimator,
even in the presence of significant domain shift. These theoret-
ical findings offer valuable insights for selecting regularization
parameters and determining the size of the neural network,
while showcasing the provable advantage of leveraging unlabeled
data in semi-supervised learning. To the best of our knowledge,
SDORE is the first provable neural network-based approach that
simultaneously estimates the regression function and its gradi-
ent, with diverse applications such as nonparametric variable
selection. The effectiveness of SDORE is validated through an
extensive range of numerical simulations.

Index Terms—Nonparametric regression, gradient estimation,
variable selection, convergence rate, gradient penalty, deep neural
network.

I. INTRODUCTION

NONPARAMETRIC regression plays a pivotal role in both
statistics and machine learning, possessing an illustrious

research history as well as a vast compendium of related
literature [1], [2], [3]. Let Ω ⊆ Rd, d ≥ 1, be a bounded

Received 21 March 2024; revised 17 October 2024; accepted 26 January
2025. Date of publication 31 January 2025; date of current version 19 March
2025. This work was supported in part by the National Key Research and
Development Program of China under Grant 2024YFA1014202; in part by
the National Natural Science Foundation of China under Grant 12125103,
Grant U24A2002, and Grant 12371441; and in part by the Fundamen-
tal Research Funds for the Central Universities. (Corresponding author:
Jerry Zhijian Yang.)

Zhao Ding and Chenguang Duan are with the School of Mathematics
and Statistics, Wuhan University, Wuhan, Hubei 430072, China (e-mail:
zd1998@whu.edu.cn; cgduan.math@whu.edu.cn).

Yuling Jiao is with the School of Artificial Intelligence, the National Center
for Applied Mathematics in Hubei, Hubei Key Laboratory of Computational
Science, and the School of Mathematics and Statistics, Wuhan University,
Wuhan, Hubei 430072, China (e-mail: yulingjiaomath@whu.edu.cn).

Jerry Zhijian Yang is with the National Center for Applied Mathematics
in Hubei, Wuhan Institute for Math & Al, the School of Mathematics and
Statistics, and Hubei Key Laboratory of Computational Science, Wuhan
University, Wuhan, Hubei 430072, China (e-mail: zjyang.math@whu.edu.cn).

Communicated by R. Venkataramanan, Associate Editor for Machine
Learning.

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TIT.2025.3537594.

Digital Object Identifier 10.1109/TIT.2025.3537594

and connected domain with sufficiently smooth boundary ∂Ω.
Consider the following nonparametric regression model

Y = f0(X) + ξ, (1)

where Y ∈ R is the response associated with the covariate
X ∈ Ω, and f0 is the unknown regression function. Here ξ
represents a random noise term satisfying E[ξ|X] = 0 and
E[ξ2|X] < ∞. The primary task of nonparametric regression
involves estimating the conditional expectation f0(x) of the
response Y, given a covariate X = x. This estimation is
typically achieved through empirical least-squares risk min-
imization:

min
f∈F

1
n

nX
i=1

( f (Xi) − Yi)2,

where {(Xi,Yi)}ni=1 is a set of independently and identically
distributed random copies of (X,Y), and F is a pre-specific
hypothesis class, such as deep ReQU neural network class in
this paper. While empirical least-squares risk minimization is
straightforward to implement and comes with solid theoretical
guarantees, it does not fully meet all desired criteria. One
major drawback is that the method places no constraints on
the gradient of the estimator, allowing for the possibility of
an arbitrarily large gradient norm. This can make the least-
squares estimator highly sensitive to the input perturbations.
Furthermore, while the least-squares estimator ensures conver-
gence in terms of function values, the convergence in terms
of derivatives can not be guaranteed.

To address these challenges, Sobolev regularization, also
known as gradient penalty, was introduced in deep learning
by [4] and [5]:

min
f∈F

1
n

nX
i=1

( f (Xi) − Yi)2 +
λ

n

nX
i=1

dX
k=1

|Dk f (Xi)|2, (2)

where λ > 0 is the regularization parameter, and Dk f denotes
the partial derivative of f with respect to the k-th input variable.
Substantial numerical experiments have consistently demon-
strated that the imposition of a gradient penalty contributes to
the enhancement of the stability and generalization of deep
learning models. The strategy surrounding gradient penalty
was adopted by [6] as a technique to learn robust features using
auto-encoders. This method was further utilized to augment
the stability of deep generative models as highlighted in the
work of [7], [8], [9], and [10]. Significantly, the gradient norm,
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being a local measure of sensitivity to input perturbations, has
seen a plethora of research focusing on its use for adversarial
robust learning. This is reflected in studies conducted by [11],
[12], [13], [14], [15], and [16].

Simultaneously estimation the regression function and its of
gradient (derivatives) carries a wide span of applications across
various fields, including the factor demand and cost estimation
in economics [17], trend analysis for time series data [18],
the analysis of human growth data [19], and the modeling of
spatial process [20]. Furthermore, estimating gradient plays
a pivotal role in the modeling of functional data [21], [22],
variable selection in nonparametric regression [23], [24], [25],
and inverse problems [26]. There are four classical approaches
to nonparametric gradient estimation: local polynomial regres-
sion [27], smoothing splines [28], kernel ridge regression
[29], and difference quotients [30]. However, local polynomial
regression and smoothing spline regression are only appli-
cable to fixed-design setting and low-dimensional problems.
The generalization of these methodologies to address high-
dimensional problems is met with a significant challenge
popularly known as the computational curse of dimensionality
[2], [31], [32]. This phenomenon refers to the fact that the
computational complexity can increase exponentially with
dimension. In contrast, deep neural network-based methods,
which are mesh-free, exhibit direct applicability to high-
dimensional problems, providing a solution to mitigate this
inherent challenge. The plug-in kernel ridge regression estima-
tors have demonstrated applicability for estimating derivatives
across both univariate and multivariate regressions within a
random-design setting [29], [33]. However, these estimators
present certain inherent limitations compared to deep neural
networks. From a computational complexity standpoint, the
scale of the kernel grows quadratically or even cubically with
the number of samples. In contrast, deep neural networks
exhibit the ability to handle larger datasets, especially when
deployed on modern hardware architectures.

Recently, there has been a substantial literature outlining the
convergence rates of deep nonparametric regression [34], [35],
[36], [37], [38], [39], [40]. However, the theoretical foundation
of Sobolev regularized least-squares using deep neural net-
works remains relatively underdeveloped. Consequently, two
fundamental questions need to be addressed:

What accounts for the enhanced stability and superior
generalization capacity of the Sobolev penalized estima-
tor compared to the standard least-squares estimator?
Furthermore, does the plug-in gradient estimator of the
Sobolev penalized regressor close to the true gradient of
the regression function, and if so, what is the corresponding
convergence rate?

In this paper, we introduce SDORE, a semi-supervised deep
Sobolev regressor, for simultaneously estimation of both the
regression function and its gradient. SDORE leverages deep
neural networks to minimize an empirical risk, augmented with
unlabeled-data-driven Sobolev regularization:

min
f∈F

1
n

nX
i=1

( f (Xi) − Yi)2 +
λ

m

mX
i=1

dX
k=1

|Dk f (Zi)|2, (3)

where {Zi}
m
i=1 is a set of unlabeled data independently and

identically drawn from a distribution on Ω. Notably, our
methodology does not necessitate alignment of the unlabeled
data distribution with the marginal distribution of the labeled
data, remaining effective even under significant domain shifts.
In the context of semi-supervised learning, data typically
consists of a modestly sized labeled dataset supplemented with
vast amounts of unlabeled data. As a result, the empirical semi-
supervised deep Sobolev regression risk aligns tightly with the
following deep Sobolev regression problem:

min
f∈F

1
n

nX
i=1

( f (Xi) − Yi)2 + λ‖∇ f ‖2L2(Ω),

plays a pivotal role in nonparametric regression and has been
investigated by [1], [41], [42], and [43]. We establish non-
asymptotic convergence rates for the deep Sobolev regressor
and demonstrate that the norm of its gradient is uniformly
bounded, shedding light on the considerable stability and
favorable generalization properties of the estimator. Further-
more, under certain mild conditions, we derive non-asymptotic
convergence rates for the plug-in derivative estimator based on
SDORE. This illustrates how abundant unlabeled data used in
SDORE (3) improves the performance of the standard gradient
penalized regressor (2). We subsequently apply SDORE to
nonparametric variable selection. The efficacy of this method
is substantiated through numerous numerical examples.

A. Contributions

Our contributions can be summarized in four folds:
(i) We introduce a novel semi-supervised deep estimator

within the framework of Sobolev penalized regression. A
large amount of unlabeled data is employed to estimate
the Sobolev penalty term. We demonstrate that this
deep ReQU neural network-based estimator achieves the
minimax optimal rate (Theorem 1). Meanwhile, with
the appropriate selection of the regularization parameter,
the norm of the estimator’s gradient can be uniformly
bounded, thereby illustrating its remarkable stability and
generalization capacities from a theoretical standpoint.

(ii) Under certain mild conditions, we establish an oracle
inequality for gradient estimation using the plug-in
deep Sobolev regressor (Lemma 5). Notably, this oracle
inequality is applicable to any convex hypothesis class.
This represents a significant theoretical advancement
beyond existing nonparametric plug-in gradient estima-
tors, which are based on linear approximation [29], [44],
by extending the framework to handle more complex
hypothesis classes involved in nonlinear approximation
[45]. Furthermore, we derive a convergence rate for the
gradient of the deep ReQU neural network-based esti-
mator, providing valuable a priori guidance for selecting
regularization parameters and choosing the size of the
neural network (Theorem 2).

(iii) We derive a convergence rate for semi-supervised esti-
mator (Theorem 3), which sheds light on the quantifiable
advantages of incorporating unlabeled data into the
supervised learning. This improvement is actualized
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TABLE I
CONVERGENCE RATES FOR SOBOLEV PENALIZED ESTIMATORS

under the condition that density ratio between the
marginal distribution of the labeled data and the distri-
bution of the unlabeled data remains uniformly bounded.
This novel finding promises to enrich our theoretical
comprehension of semi-supervised learning, particularly
in the context of deep neural networks.

(iv) The gradient estimator introduces a novel tool with
potential applications in areas such as nonparametric
variable selection. In the case where the regression
function exhibits sparsity structure (Assumption 7), we
prove that the convergence rate depends only on the
number of relevant variables, rather than the data dimen-
sion (Corollary 1). Moreover, we establish the selection
consistency of the deep Sobolev regressor (Corollary 2),
showing that, with a sufficiently large number of labeled
data pairs, the estimated relevant set is highly likely
to match the ground truth relevant set. To validate our
approach, we conduct a series of numerical experiments,
which confirm the effectiveness and reliability of our
proposed methodology.

B. Main Results Overview

In this work, we focus on two estimators in the setting of
nonparametric regression (1). The Deep SObolev REgressor
(DORE) is derived from the regularized empirical risk mini-
mization:

bf λD ∈ arg min
f∈F

bLλD( f )=
1
n

nX
i=1

( f (Xi) − Yi)2

+ λ‖∇ f ‖2L2(νX ), DORE

where D = {(Xi,Yi)}ni=1 is a set of independent copies of (X,Y),
λ > 0 is the regularization parameter, and F is a class of
deep ReQU neural networks. In some application scenarios,
the regularization term in (DORE) is intractable analytically.
To address this issue, we approximate the regularization term
by its data-driven counterpart, yielding the following semi-
supervised empirical risk minimizer

bf λD,S ∈ arg min
f∈F

bLλD,S ( f ) =
1
n

nX
i=1

( f (Xi) − Yi)2

+
λ

m

mX
i=1

dX
k=1

|Dk f (Zi)|2, SDORE

where S = {Zi}
m
i=1 is a set of independently and identically

random variables drawn from νX .

The main theoretical results derived in this paper are sum-
marized in Table I. As shown in Theorem 1, the convergence
rate of the deep Sobolev regressor in L2-norm achieves the
minimax optimality. However, Theorems 3 and 2 demonstrate
that the convergence rates in L2-norm and H1-semi-norm is
sub-optimal.

We utilize the deep Sobolev regressor to tackle an appli-
cation scenarios: nonparametric variable selection. We present
the theoretical findings related to nonparametric variable selec-
tion in Table II, including the convergence rate and selection
consistency.

C. Preliminaries and Notations

Before proceeding, we introduce some notation and defini-
tions. Let Ω ⊆ Rd be a bounded domain, and let µX and νX be
two probability measures on Ω with densities p(x) and q(x),
respectively. The L2(µX) inner-product and norm are given,
respectively, by

(u, v)L2(µX ) =

Z
Ω

uvdµX ,

‖u‖2L2(µX ) = (u, u)L2(µX ).

Similarly, one can define the L2(νX) inner-product and norm.
Furthermore, define the density ratio between νX and µX by
r(x) = q(x)/p(x). Suppose the density ratio is uniformly upper-
and lower-bounded, that is, κ := supx∈Ω |r(x)| < ∞ and ζ :=
infx∈Ω |r(x)| > 0. Then it is straightforward to verify that

ζ‖u‖2L2(µX ) ≤ ‖u‖
2
L2(νX ) ≤ κ‖u‖

2
L2(µX ).

For two functions u, v ∈ H1(νX), the inner products between
their gradients is defined as

(∇u,∇v)L2(νX ) =

Z
Ω

dX
k=1

DkuDkvdνX .

Definition 1 (Continuous functions space): Let Ω be a
bounded domain in Rd and s ∈ N. Let C s(Ω) denote the vector
space consisting of all functions f which, together with all their
partial derivatives Dα f of orders ‖α‖1 ≤ s, are continuous on
Ω. The Banach space C s(Ω) is equipped with the norm

‖ f ‖Cs(Ω) := max
‖α‖1≤s

sup
x∈Ω
|Dα f (x)|,

where Dα = Dα1
1 · · ·D

αd
d with α = (α1, . . . , αd)T ∈ Nd.

Next, we introduce the concept of a deep neural network.
While deep ReLU neural networks have shown empirical

Authorized licensed use limited to: Wuhan University. Downloaded on April 02,2025 at 12:41:50 UTC from IEEE Xplore.  Restrictions apply. 



2958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 71, NO. 04, APRIL 2025

TABLE II
THEORETICAL RESULTS FOR APPLICATIONS

success in nonparametric regression tasks, they are not suitable
for scenarios where derivatives of the network are required
in the objective function [46]. This limitation arises from the
piecewise linear nature of the ReLU activation function, which
results in a lack of continuous derivatives. In contrast, the
Rectified Quadratic Unit (ReQU) activation function, defined
as the square of the ReLU function, possesses a continuous
first derivative. This characteristic allows us to incorporate the
deep ReQU neural network in the SDORE framework, thereby
expanding the possibilities for the simultaneous estimation of
regression values and their derivatives.

Definition 2 (Deep ReQU Neural Network): A neural
network ψ : RN0 → RNL+1 is a function defined by

ψ(x) = TL(%(TL−1(· · · %(T0(x)) · · · ))), (4)

where the ReQU activation function %(x) = (max{x, 0})2

is applied component-wisely and T`(x) := A`x + b` is an
affine transformation with A` ∈ R

N`+1×N` and b` ∈ RN` for
` = 0, . . . , L. In this paper, we consider the case N0 = d
and NL+1 = 1. The number L is called the depth of the
neural network, and the number max1≤`≤L N` is called the
width of the neural network.Additionally,

PL
`=0(‖A`‖0 + ‖b`‖0)

represents the total number of non-zero weights within the
neural network. The space of deep ReQU neural networks
with given network architecture is defined as

N (L,W, S ) :=
n
ψ is of the form (4) :

max
1≤`≤L

N` ≤ W,
LX
`=0

(‖A`‖0 + ‖b`‖0) ≤ S
o
.

To measure the complexity of a function class, we next
introduce the empirical covering number.

Definition 3 (Empirical Covering Number): Let F be a
class of functions from Ω to R and D = {Xi}

n
i=1 ⊆ Ω. Define

the Lp(D)-norm of the function f ∈ F as

‖ f ‖Lp(D) =

 
1
n

nX
i=1

| f (Xi)|p
!1/p

, 1 ≤ p < ∞.

For p = ∞, define ‖ f ‖L∞(D) = max1≤i≤n | f (Xi)|. A function set
Fδ is called an Lp(D) δ-cover of F if for each f ∈ F , there
exits fδ ∈ Fδ such that ‖ f − fδ‖Lp(D) ≤ δ. Furthermore,

N(δ,F , Lp(D)) = inf
n
|Fδ| : Fδ is a Lp(D)δ-cover of F

o
is called the Lp(D) δ-covering number of F .

We now introduce some basic notations. The set of positive
integers is denoted by N+ = {1, 2, . . .}. Denote N = {0} ∪ N+

for convenience. For a positive integer m ∈ N+, let [m] denote
the set {1, . . . ,m}. We employ the notations A . B and B & A
to signify that there exists an absolute constant c > 0 such that
A ≤ cB.

D. Organization

The remainder of the article is organized as follows. We
commence with a review of related work in Section II. Sub-
sequently, we outline the deep Sobolev penalized regression
and propose the semi-supervised estimator in Section III. We
present the convergence rate analysis for the regression in
Section IV and for the derivative estimation in Section V. In
Section VI, we apply our method to nonparametric variable
selection, and provide an abundance of numerical studies.
The article concludes with a few summarizing remarks in
Section VII. All technical proofs are relegated to the supple-
mentary material.

II. RELATED WORK

In this section, we review the topics and literature related
to this work, including derivative estimation, regression using
deep neural network, nonparametric variable selection and
semi-supervised learning.

A. Nonparametric Derivative Estimation

As previously indicated, the necessity to estimate derivatives
arises in various application contexts. Among the simplest
and most forthright methods for derivative estimation is the
direct measurement of derivatives. For example, in the field of
economics, estimating cost functions [17] frequently involves
data on a function and its corresponding set of derivatives. A
substantial volume of literature [47], [48], [49] considers this
scenario by reverting to a corresponding regression model:

Yα = Dα f0(X) + ξα,

where α ∈ Nd is a multi-index, Dα is the α-th derivative
operator, and ξα are random noise. The theoretical framework
underpinning this method can be seamlessly generalized from
that of classical nonparametric regression. However, it may
be worth noting that in some practical application settings,
measurements of derivatives are often not readily available.
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To estimate derivatives with noisy measurements only on
function values, researchers have put forward nonparametric
derivative estimators [50]. Nonparametric derivative estima-
tion encompasses four primary approaches: local polynomial
regression [27], smoothing splines [28], kernel ridge regression
[29], and difference quotients [30], [51], [52]. Among these
approaches, the first three are categorized as plug-in derivative
estimators. In this article, we present a review of these plug-in
approaches using the one-dimensional case as an illustrative
example.

1) Local Polynomial Regression: In standard polynomial
regression, a single polynomial function is used to fit the data.
One of the main challenges with this method is the need to
use high-order polynomials to achieve a more accurate approx-
imation. However, high-order polynomials may be oscillative
in some regions, which is known as Runge phenomenon
[53]. To repair the drawbacks of the polynomial regression, a
natural way is to employ the low-degree polynomial regression
locally, which is called local polynomial regression [54].
Derivative estimation using local polynomial regression was
first proposed by [27]. Let K be a kernel function and h be
the bandwidth controlling the smoothness. We assign a weight
K((Xi − x)/h) to the point (Xi,Yi), leading to the following
weighted least-squaress problem:

min
{β`(x)}p`=0

nX
i=1

K
�

Xi − x
h

� 
Yi −

pX
`=0

β`(x)(Xi − x)`
!2

. (5)

Herr the kernel K should decay fast enough to eliminate the
impact of a remote data point. Denote by {bβ`}p`=0 the estimator
obtained by (5). The estimated regression curve at point x is
given by bf (x) =

Pp
`=0
bβ`(x)(Xi − x)`. Further, according to

Taylor’s theorem, the estimator of the first order derivative
f ′0 at point x is given by bf ′(x) = bβ1(x). References [55]
and [56] established the uniform strong consistency and the
convergence rates for the regression function and its par-
tial derivatives. Derivative estimation using local polynomial
regression in multivariate data has been discussed in [57].

2) Smoothing Splines: Extensive research has been con-
ducted on the use of smoothing splines in nonparametric
regression [2], [41], [58], [59]. This method starts from the
minimization of a penalized least-squaress risk

min
f∈H2([0,1])

1
n

nX
i=1

( f (Xi) − Yi)2 + γ

Z 1

0
( f ′′(x))2dx, (6)

where the first term encourages the fitting of estimator to
data, the second term penalizes the roughness of the estimator,
and the smoothing parameter γ > 0 controls the trade-off

between the two conflicting goals. The minimizer bf of (6)
is an estimator of the regression function f0, which is called
cubic smoothing spline. The plug-in derivative estimator bf ′ is
a direct estimate of the derivative f ′0 of the regression function.
This idea has been pursued by [28] and [44]. In the perspective
of theoretical analysis, [44] shows that spline derivative esti-
mators can achieve the optimal rate of convergence, and [60]
studies local asymptotic properties of derivative estimators.

3) Kernel Ridge Regression: Kernel ridge regression is a
technique extensively employed in the domain of nonparamet-
ric regression. Reference [29] introduced a plug-in kernel ridge
regression estimator for derivatives of the regression function,
establishing a nearly minimax convergence rate for univari-
ate function classes within a random-design setting. Further
expanding upon this method, [33] applied it to multivariate
regressions under the smoothing spline ANOVA model and
established minimax optimal rates. Additionally, [33] put forth
a hypothesis testing procedure intended to determine whether
a derivative is zero.

B. Nonparametric Regression Using Deep Neural Network

In comparison to the nonparametric methods mentioned
above, deep neural networks [32] also stand out as a
formidable technique employed within machine learning and
nonparametric statistics. Rigorous of the convergence rate
analysis have been established for deep nonparametric regres-
sion [34], [35], [36], [37], [38], [39], [40], but derivative
estimation using deep neural networks remained an open
problem prior to this paper, even though the derivative of the
regression estimate is of great importance as well.

Unfortunately, estimating derivatives is not always a
by-product of function estimation. Indeed, the basic mathemat-
ical analysis [61, Section 3.7] shows that, even if estimators
{ fn}n≥1 converge to the regression function f0, the convergence
of plug-in derivative estimators {∇ fn}n≥1 is typically not guar-
anteed. To give a counterexample, we consider the functions
fn : I → R, x 7→ n−1 sin(nx), and let f0 : I → R be the zero
function f0(x) = 0, where I := [0, 2π]. Then ‖ fn − f0‖Lp(I) → 0
as n→ 0, but limn→∞ ‖ f ′n − f ′0‖Lp(I) , 0 for each 1 ≤ p ≤ ∞.

Roughly speaking, the success of classical approaches for
derivative estimation can be attributed to their smoothing
techniques, such as the kernel function incorporated in local
polynomial regression, or the regularization in smoothing
spline and kernel ridge regression. Thus, to guarantee the con-
vergence of the plug-in derivative estimator, the incorporation
of a Sobolev regularization term is imperative within the loss
function, akin to the methodology applied in smoothing spline.

C. Nonparametric Vairable Selection

Data collected in real-world applications tend to be high-
dimensional, although only a subset of the variables within the
covariate vector may genuinely exert influence. Consequently,
variable selection becomes critical in statistics and machine
learning as it both mitigates computational complexity and
enhances the interpretability of the model. However, traditional
methods for variable selection have been primarily focused
on linear or additive models and do not readily extend to
nonlinear problems. One inclusive measure of the importance
of each variable in a nonlinear model is its corresponding
partial derivatives. Building on this concept, a series of works
[23], [24], [25] introduced sparse regularization to kernel
ridge regression for variable selection. They have consequently
devised a feasible computational learning scheme and devel-
oped consistency properties of the estimator. However, the
theoretical analysis is limited to reproducing kernel Hilbert
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space and cannot be generalized to deep neural network-based
methods.

D. Semi-Supervised Learning

Semi-supervised learning has recently gained significant
attention in statistics and machine learning [62], [63]. The
basic setting of semi-supervised learning is common in many
practical applications where the label is often more difficult
or costly to collect than the covariate vector. Therefore, the
fundamental question is how to design appropriate learning
algorithms to fully exploit the value of unlabeled data. In
the past years, significant effort has been devoted to studying
the algorithms and theory of semi-supervised learning [64],
[65], [66], [67], [68], [69], [70]. The most related work is
[65], whose main idea is to introduce an unlabeled-data-
driven regularization term to the loss function. Specifically,
[65] employ a manifold regularization to incorporate additional
information about the geometric structure of the marginal
distribution, where the regularization term is estimated on the
basis of unlabeled data. In addition, our method does not
require the distribution of the unlabeled data to be aligned with
the marginal distribution of the labeled data exactly, which
expands the applicability scenarios.

III. DEEP SOBOLEV REGRESSION

In this section, we present an in-depth examination of
Sobolev penalized least-squares regression as implemented
through deep neural networks. Initially, we incorporate the
H1-semi-norm penalty into the least-squares risk. Subse-
quently, we delineate the deep Sobolev regressor as referenced
in Section III-A, followed by an introduction to the semi-
supervised Sobolev regressor elaborated in Section III-B.

We focus on the following H1(νX)-semi-norm penalized
least-squares risk:

min
f∈A

Lλ( f ) = E(X,Y)∼µ
�
( f (X) − Y)2�+ λ‖∇ f ‖2L2(νX ), (7)

where µ is a probability measure on Ω × R associated to the
regression model (1), and νX is another probability measure
on Ω. The admissible set A defined as

A =
n

f ∈ L2(µX) : Dk f ∈ L2(νX), 1 ≤ k ≤ d
o
.

Here the regularization parameter λ > 0 governs the delicate
equilibrium between conflicting objectives: data fitting and
smoothness. Specifically, when λ nearly or entirely vanishes,
(7) aligns with the standard population least-squares risk.
Conversely, as λ approaches infinity, the minimizer of (7) tends
towards a constant estimator. For the joint distribution µ of
(X,Y), let µX denote the margin distribution of X. According
to (1), one obtains easily

Lλ( f ) = ‖ f − f0‖2L2(µX ) + λ‖∇ f ‖2L2(νX ) + E[ξ2], (8)

where the L2(µX)-risk may be respect to a different measure µX

than that νX associated with Sobolev penalty. Throughout this
paper, we assume that the distributions µX and νX have density
function p and q, respectively. Furthermore, the density ratio
r(x) := q(x)/p(x) satisfies the following condition, which may
encourage significant domain shift.

Assumption 1 (Uniformly bounded density ratio): The
density ratio between νX and µX has a uniform upper-bound
and a positive lower-bound, that is,

κ := sup
x∈Ω
|r(x)| < ∞ and ζ := inf

x∈Ω
|r(x)| > 0.

Sobolev penalized regression can be interpreted as a PDE-
based smoother of the regression function f0. Let f λ denote
a solution to the quadratic optimization problem (7). Some
standard calculus of variations [71], [72] show that, if the
minimizer f λ has square integrable second derivatives, then
f λ solves the following second-order linear elliptic equation
with homogeneous Neumann boundary condition:(

−λ∆ f λ + f λ = f0, in Ω,

∇ f λ · n = 0, on ∂Ω.

In the context of partial differential equations (PDE), the vari-
ational problem (7) is called Ritz method [71, Remark 2.5.11].
The following lemma shows the uniqueness of solution to the
above PDE.

Lemma 1 (Existence and Uniqueness of Population Risk
Minimizer): Suppose Assumption 1 holds and f0 ∈ L2(µX).
Then (7) has a unique minimizer in H1(νX). Furthermore, the
minimizer f λ satisfies f λ ∈ H2(νX).

In practical applications, the data distribution µ in (7)
remains unknown, making the minimization of population
risk (7) unattainable. The goal of regression is to estimate
the function f0 from a finite set of data pairs D = {(Xi,Yi)}ni=1
which are independently and identically drawn from µ, that is,

Yi = f0(Xi) + ξi, i = 1, . . . , n.

We introduce two Sobolev regressor based on the random
sample D in the following two subsections, respectively.

A. Deep Sobolev Regressor
Suppose that the probability measure νX is either provided

or selected by the user. Then the regularization term can
be estimated with an arbitrarily small error. Hence, without
loss of generality, this error is omitted in this discussion. In
this setting, the deep Sobolev regressor is derived from the
regularized empirical risk minimization:

bf λD ∈ arg min
f∈F

bLλD( f ) =
1
n

nX
i=1

( f (Xi) − Yi)2

+λ‖∇ f ‖2L2(νX ), (9)

where F ⊆ A is a class of deep neural networks.
The objective functional in (9) has been investigated previ-

ously within the literature of splines, according to research by
[1], [41], [42] and [43]. However, in these studies, minimiza-
tion was undertaken within the Sobolev space H1(Ω) or the
continuous function space C1(Ω) as opposed to within a class
of deep neural networks.

B. Semi-Supervised Deep Sobolev Regressor

In numerous application scenarios, the probability measure
νX remains unknown and cannot be provided by the user.
Nevertheless, a substantial quantity of samples drawn from νX
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can be obtained at a very low cost. This is a semi-supervised
setting that provides access to labeled data and a relatively
large amount of unlabeled data.

Let S = {Zi}
m
i=1 be a random sample with {Zi}

m
i=1 inde-

pendently and identically drawn from νX . Then replacing the
population regularization term in (9) by its data-driven coun-
terpart, we obtain the following semi-supervised empirical risk
minimizerbf λD,S ∈ arg min

f∈F
bLλD,S ( f ) =

1
n

nX
i=1

( f (Xi) − Yi)2

+
λ

m

mX
i=1

dX
k=1

|Dk f (Zi)|2, (10)

where the deep neural network class F satisfies F ⊆ W1,∞(Ω).
A similar idea was mentioned by [65] in the context of
manifold learning.

The estimator presented in (10), which incorporates unla-
beled data into a supervised learning framework, is commonly
referred to as a semi-supervised estimator. The availability of
labeled data is often limited due to its high cost, but in many
cases, there is an abundance of unlabeled data that remains
underutilized. Given that there are no strict constraints on the
measure νX in our method, it is possible to generate a substan-
tial amount of unsupervised data from supervised data through
data augmentation, even without a large quantity of unlabeled
data. Hence, this semi-supervised learning framework exhibits
a broad range of applicability across various scenarios.

It is worth highlighting that when the measure νX is equal
to µX , the formulation (10) is reduced to

bf λD,S ∈ arg min
f∈F

bLλD,S ( f ) =
1
n

nX
i=1

( f (Xi) − Yi)2

+
λ

n + m

n+mX
i=1

dX
k=1

|Dk f (Xi)|2, (11)

where Xn+i = Zi for 1 ≤ i ≤ m. The semi-supervised
Sobolev regressor, deployed in (10) or (11), imparts mean-
ingful insights on how to leverage unlabeled data to enhance
the efficacy of original supervised learning approach.

IV. DEEP SOBOLEV REGRESSOR WITH
GRADIENT-NORM CONSTRAINT

In this section, we provide a theoretical analysis for the deep
Sobolev regressor (9). The first result, given in Lemma 2, is
an oracle-type inequality, which provides an upper-bound for
the L2(µX)-error of the deep Sobolev regressor along with an
upper-bound for the L2(νX)-norm of its gradient. Further, we
show that (9) attains the minimax optimal convergence rate,
given that the regularization parameter are chosen appropri-
ately. We also confirm that the gradient norm of the deep
Sobolev regressor can be uniformly bounded by a constant.

Assumption 2 (Sub-Gaussian noise): The noise ξ in (1)
is sub-Gaussian with mean 0 and finite variance proxy σ2

conditioning on X = x for each x ∈ Ω, that is, its conditional
moment generating function satisfies

E[exp(tξ)|X = x] ≤ exp
�
σ2t2

2

�
, ∀ t ∈ R, x ∈ Ω.

Assumption 3 (Bounded hypothesis): There exists an abso-
lute positive constant B0, such that supx∈Ω | f0(x)| ≤ B0. Further,
functions in hypothesis class F are also bounded, that is,
supx∈Ω | f (x)| ≤ B0.

Assumptions 2 and 3 are standard and very mild conditions
in nonparametric regression, as extensively discussed in the
literature [1], [3], [35], [36], [38], [40]. It is worth noting that
the upper-bound B0 of hypothesis may be arbitrarily large and
does not vary with the sample size n. In fact, this assumption
can be removed through the technique of truncation, without
affecting the subsequent proof, which can be found in [34],
[37], and [39] for details.

The convergence rate relies on an oracle-type inequality as
follows.

Lemma 2 (Oracle inequality): Suppose Assumptions 1 to 3
hold. Let bf λD be the deep Sobolev regressor defined as (9) with
regularization parameter λ > 0. Then it follows that for each
n ≥ log N(B0δ,F , L2(D)),

ED∼µn

h
‖bf λD − f0‖2L2(µX )

i
. inf

f∈F

n
‖ f − f0‖2L2(µX ) + λ‖∇ f ‖2L2(νX )

o
+ (B2

0 + σ2) inf
δ>0

�
log N(B0δ,F , L2(D))

n
+ δ

�
,

ED∼µn

h
‖∇bf λD‖2L2(νX )

i
. inf

f∈F

�
1
λ
‖ f − f0‖2L2(µX ) + ‖∇ f ‖2L2(νX )

�
+

B2
0 + σ2

λ
inf
δ>0

�
log N(B0δ,F , L2(D))

n
+ δ

�
.

Roughly speaking, the first inequality of Lemma 2 decom-
poses the L2(µX)-error of the deep Sobolev regressor into
three terms, namely: the approximation error, the regulariza-
tion term, and the generalization error. Intriguingly, from the
perspective of the first two terms, we need to find a deep
neural network in F that not only has an sufficiently small
L2(µX)-distance from the regression function f0, but also has
an H1(νX)-semi-norm as small as possible.

The literature on deep learning theory has extensively inves-
tigated the approximation properties of deep neural networks
[40], [73], [74], [75], [76], [77], [78], [79], [80], [81], [82].
However, there is limited research on the approximation error
analysis for neural networks with gradient norm constraints
[83], [84]. The following lemma illustrates the approximation
power of deep ReQU neural networks with gradient norm
constraints.

Lemma 3 (Approximation With Gradient Constraints): Let
Ω ⊆ K ⊆ Rd be two bounded domain. Set the hypothesis class
as a deep ReQU neural network class F = N (L,W, S ) with
L = O(log N) and S = O(Nd). Then for each φ ∈ C s(K) with
s ∈ N≥1, there exists a neural network f ∈ F such that

‖ f − φ‖L2(µX ) ≤ CN−s‖φ‖Cs(K),

‖∇ f ‖L2(νX ) ≤ ‖∇φ‖L2(νX ) + C‖φ‖Cs(K),

where C is a constant independent of N.
This lemma provides a novel approximation error bound

of deep ReQU networks with gradient norm constraint. This
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highlights a fundamental difference between deep ReLU and
ReQU neural networks. As presented by [83] and [84], the
gradient norm of deep ReLU networks goes to infinity when
the approximation error diminishes. In contrast, Lemma 3
demonstrates that deep ReQU neural networks, under a gradi-
ent norm constraint, can approximate the target function with
an arbitrarily small error.

With the aid of the preceding lemmas, we can now establish
the following convergence rates for the regularized estimator.

Theorem 1 (Convergence rates): Suppose Assumptions 1
to 3 hold. Let Ω ⊆ K ⊆ Rd be two bounded domain. Assume
that f0 ∈ C s(K) with s ∈ N≥1. Set the hypothesis class as a deep
ReQU neural network class F = N (L,W, S ) with L = O(log n)
and S = O

�
n

d
d+2s

�
. Let bf λD be the deep Sobolev regressor

defined as (9) for each λ > 0. Then it follows that

ED∼µn

h
‖bf λD − f0‖2L2(µX )

i
≤ O(λ) +O

�
n−

2s
d+2s log3 n

�
,

ED∼µn

h
‖∇bf λD‖2L2(νX )

i
≤ O(1) +O

�
λ−1n−

2s
d+2s log3 n

�
.

Further, setting λ = O
�

n−
2s

d+2s log3 n
�

implies

ED∼µn

h
‖bf λD − f0‖2L2(µX )

i
≤ O

�
n−

2s
d+2s log2 n

�
,

ED∼µn

h
‖∇bf λD‖2L2(νX )

i
≤ O(1).

Here the constant behind the big O notation is independent
of n.

Theorem 1 quantifies how the regularization parameter λ
balances two completing goals: data fitting and the gradient
norm of the estimator, and thus provides an a priori guidance
for the selection of the regularization term. When one chooses
λ = O

�
n−

2s
d+2s log3 n

�
, the rate of the deep Sobolev regressor

O
�

n−
2s

d+2s log3 n
�

aligns with the minimax optimal rate up
to a log-factor, as established in [1], [3], [85], and [86].
Additionally, our theoretical findings correspond to those in
nonparametric regression using deep neural networks [34],
[35], [36], [37], [38], [39], [40]. In contrast to standard empir-
ical risk minimizers, the deep Sobolev regressor imposes a
constraint on the gradient norm while simultaneously ensuring
the minimax optimal convergence rate. Consequently, Sobolev
regularization improves the stability and enhances the gener-
alization abilities of deep neural networks.

A similar problem has been explored by researchers within
the context of splines [1], [42], [43], where the objective
functional aligns with that of the deep Sobolev regressor (9).
However, in these studies, minimization was token over the
Sobolev space H1(Ω) or the continuous function space C1(Ω)
instead of a deep neural network class. The consistency in
this setting was studied by [42], and the convergence rate was
proven to be minimax optimal by [43] or [1, Theorem 21.2].
It is worth noting that the rate analysis in these studies relies
heavily on the theoretical properties of the spline space and
cannot be generalized to our setting.

V. SIMULTANEOUS ESTIMATION OF REGRESSION
FUNCTION AND ITS DERIVATIVE

In this section, we demonstrate that under certain mild
conditions, deep Sobolev regressors converge to the regression

function in both the L2(µX)-norm and the H1(νX)-semi-
norm. We establish rigorous convergence rates for both the
deep Sobolev regressor and its semi-supervised counterpart.
Additionally, we provide a priori guidance for selecting the
regularization parameter and determining the appropriate size
of neural networks.

To begin with, we define the convex-hull of the neural net-
work class F , denoted as conv(F). Subsequently, we proceed
to redefine both the deep Sobolev regressor (9) and its semi-
supervised counterpart (10) asbf λD ∈ arg min

f∈conv(F )

bLλD( f ), bf λD,S ∈ arg min
f∈conv(F )

bLλD,S ( f ). (12)

Notice that the functions within the convex-hull conv(F) are
also deep neural networks, which can be implemented by the
parallelization of neural networks [87], [88]. Therefore, in the
algorithmic implementation, solving (12) will only result in
mere changes compared to solving in the original problem (9)
or (10).

Throughout this section, suppose the following assumptions
are fulfilled.

Assumption 4 (Regularity of Regression Function): The
regression function in (1) satisfies ∆ f0 ∈ L2(νX) and ∇ f0 ·n = 0
a.e. on ∂Ω, where n is the unit normal to the boundary.

Since there are no measurements available on the boundary
∂Ω or out of the domain Ω, it is not possible to estimate the
derivatives on the boundary accurately. Hence, to simplify the
problem without loss of generality, we assume that the under-
lying regression f0 has zero normal derivative on the boundary,
as stated in Assumption 4. This assumption corresponds to the
homogeneous Neumann boundary condition in the context of
partial differential equations [72].

We also make the following assumption regarding the
regularity of the density function.

Assumption 5 (Bounded Score Function): The score func-
tion of the probability measure νX is bounded in L2(νX)-norm,
that is, ‖∇(log q)‖L2(νX ) < ∞.

A sufficient condition for Assumption 5 is that ∇q is
uniformly upper bounded and q has a uniform positive lower
bound. In fact, this stronger assumption is mild and standard
for a distribution νX .

In the following lemma, we show that the population
Sobolev penalized risk minimizer f λ converges to the regres-
sion function f0 in L2(µX)-norm with rate O(λ2). Additionally,
the L2(νX)-rate of its derivatives is O(λ).

Lemma 4: Suppose Assumptions 1, 4 and 5 hold. Let f λ

be the unique minimizer of the population risk (7). Then it
follows that for each λ > 0

‖ f λ − f0‖2L2(µX )

. λ2κ
n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
,

‖∇( f λ − f0)‖2L2(νX )

. λκ
n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
.

Up to now, we have shown the convergence of the popula-
tion Sobolev penalized risk minimizer. However, researchers
are primarily concerned with convergence rates of the empir-
ical estimators obtained via a finite number of labeled data
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pairs D = {(Xi,Yi)}ni=1. In the remaining part of this section,
we mainly focus on the convergence rate analysis for the deep
Sobolev regressor and its semi-supervised counterpart in (12).

A. Analysis for Deep Sobolev Regressor

The theoretical foundation for simultaneous estimation of
the regression function and its gradient is the following oracle-
type inequality.

Lemma 5 (Oracle Inequality): Suppose Assumptions 1
to 5 hold. Let bf λD be the deep Sobolev regressor defined
as (12). Then it follows that for each λ > 0 and each
n ≥ log N(B0δ,F , L2(D)),

ED∼µn

h
‖bf λD − f0‖2L2(µX )

i
. βλ2 + εapp(F , λ) + εgen(F , n),

ED∼µn

h
‖∇(bf λD − f0)‖2L2(νX )

i
. βλ+ λ−1εapp(F , λ) + λ−1εgen(F , n),

where β is a positive constant defined as

β = κ
n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
,

the approximation error εapp(F , λ) and the generalization error
εgen(F , n) are defined, respectively, as

εapp(F , λ)

= inf
f∈F

n
‖ f − f0‖2L2(µX ) + λ‖∇( f − f0)‖2L2(νX )

o
,

εgen(F , n)

=
B2

0 + σ2

log−1 n
inf
δ>0

(�
2 log N(B0δ,F , L2(D))

n

� 1
2

+ δ

)
.

As discussed in Section IV, [1, Chapter 21] has investigated
an optimization problem similar to the deep Sobolev regressor.
However, to the best of our knowledge, we are the first to
demonstrate the oracle inequality for the gradient of estimator.
The proof employs a similar technique as that of Lemma 4.
Specifically, the deep Sobolev regressor acts as the minimizer
of (12), which implies that it satisfies a variational inequality
derived from the first-order optimality condition [89], [90]. By
utilizing standard techniques from statistical learning theory,
we are able to derive the desired oracle inequality.

In simple terms, if we select an appropriate neural network
class and have a sufficiently large number of labeled data pairs,
we can make the approximation error and generalization error
arbitrarily small. Consequently, the overall error is primarily
determined by the regularization parameter λ. At this point,
the error bound aligns with rates in Lemma 4.

Recall the oracle inequality derived in Lemma 2, which
requires the neural network to approximate the regression
function while restricting its gradient norm. In contrast, the
approximation term in Lemma 5 necessitates the neural net-
work to approximate both the regression function and its
derivatives simultaneously. Thus, we now introduce the fol-
lowing approximation error bound in H1-norm.

Lemma 6 (Approximation in H1-norm): Let Ω ⊆ K ⊆ Rd

be two bounded domain. Set the hypothesis class as a deep
ReQU neural network F = N (L,W, S ) with L = O(log N) and

S = O(Nd). Then for each φ ∈ C s(K) with s ∈ N≥2, there
exists f ∈ F such that

‖ f − φ‖L2(µX ) ≤ CN−s‖φ‖Cs(K),

‖∇( f − φ)‖L2(νX ) ≤ CN−(s−1)‖φ‖Cs(K),

where C is a constant independent of N.
With the aid of previously prepared lemmas, we have

following convergence rates for the deep Sobolev regressor.
Theorem 2 (Convergence Rates): Suppose Assumptions 1 to

5 hold. Let Ω ⊆ K ⊆ Rd be two bounded domain. Assume that
f0 ∈ C s(K) with s ∈ N≥2. Set the hypothesis class as a deep
ReQU neural network class F = N (L,W, S ) with L = O(log n)
and S = O

�
n

d
d+4s

�
. Let bf λD be the deep Sobolev regressor

defined in (12) with regularization parameter λ > 0. Then it
follows that

ED∼µn

h
‖bf λD − f0‖2L2(µX )

i
≤ O(λ2) +O

�
n−

2s
d+4s log4 n

�
,

ED∼µn

h
‖∇(bf λD − f0)‖2L2(νX )

i
≤ O(λ) +O

�
λ−1n−

2s
d+4s log4 n

�
.

Further, setting λ = O
�

n−
s

d+4s log2 n
�

implies

ED∼µn

h
‖bf λD − f0‖2L2(µX )

i
≤ O

�
n−

2s
d+4s log4 n

�
,

ED∼µn

h
‖∇(bf λD − f0)‖2L2(νX )

i
≤ O

�
n−

s
d+4s log2 n

�
.

Here the constant behind the big O notation is independent
of n.

Theorem 2 provides theoretical guidance for the selection
of the size of neural networks and the choice of regu-
larization parameters. In comparison to the regularization
parameter λ = O

�
n−

2s
d+2s log3 n

�
employed in Theorem 1,

λ = O
�

n−
s

d+4s log2 n
�

utilized in Theorem 2 is much larger.

The L2(µX)-rate O
�

n−
2s

d+4s

�
of the deep Sobolev regressor

does not attain the minimax optimality. Furthermore, the
convergence rate O

�
n−

s
d+4s log4 n

�
for the derivatives is also

slower than the minimax optimal rate O
�

n−
2(s−1)
d+2s

�
derived in

[85].

B. Analysis for Semi-Supervised Deep Sobolev Regressor

In scenarios where the distribution νX is unknown, estimat-
ing the Sobolev penalty using the unlabeled data becomes
crucial. In qualitative terms, having a sufficiently large number
of unlabeled data points allows us to estimate the regular-
ization term with an arbitrarily small error. However, the
following questions are not answered quantitatively:

How does the error of the semi-supervised estimator depend
on the number of unlabeled data? How does the unlabeled
data in semi-supervised learning improve the standard
supervised estimators?

In this section, we provide a comprehensive and rigorous
analysis for the semi-supervised deep Sobolev regressor. To
begin with, we present the following oracle inequality.
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Assumption 6 (Bounded Derivatives of Hypothesis): There
exists positive constants {B1,k}

d
k=1, such that supx∈Ω |Dk f0(x)| ≤

B1,k for 1 ≤ k ≤ d. Further, the first-order partial derivatives
of functions in hypothesis class F are also bounded, i.e.,
supx∈Ω |Dk f (x)| ≤ B1,k for each 1 ≤ k ≤ d and f ∈ F . Denote
by B2

1 :=
Pd

k=1 B2
1,k

The inclusion of Assumption 6 is essential in the analysis
of generalization error that involves derivatives, as it plays a
similar role to Assumption 3 in the previous analysis.

Lemma 7 (Oracle Inequality): Suppose Assumptions 1 to 6
hold. Let bf λD,S be the semi-supervised deep Sobolev regressor
defined in (12). For each λ > 0, n ≥ log N(B0δ,F , L2(D)) and
m ≥ max1≤k≤d log N(B1,kδ,DkF , L2(S)),

E(D,S)∼µn×νm
X

h
‖bf λD,S − f0‖2L2(µX )

i
. β̃λ2 + εapp(F , λ)
+ εgen(F , n) + εreg

gen(∇F ,m),

E(D,S)∼µn×νm
X

h
‖∇(bf λD,S − f0)‖2L2(νX )

i
. β̃λ+ λ−1εapp(F , λ)

+ λ−1εgen(F , n) + λ−1εreg
gen(∇F ,m),

where β̃ is a positive constant defined as β̃ = β + B2
1, the

approximation error εapp(F , λ) and the generalization error
εgen(F , n) are defined as those in Lemma 5. The generalization
error εreg

gen(∇F ,m) corresponding to the regularization term are
defined as

εreg
gen(∇F ,m) = B2

1 inf
δ>0

�
max
1≤k≤d

N(B1,kδ,DkF , L2(S))
m

+ δ

�
.

In comparison to Lemma 5, the error bound has not under-
gone significant changes, and it has only been augmented
by one additional generalization error associated with the
regularization term. Further, this term vanishes as the number
of unlabeled data increases.

In particular, we focus on the scenario where the distri-
butions of covariates in both labeled and unlabeled data are
identical, i.e., νX = µX . When only the labeled data pairs
(e.g., (2)) are used, the generalization error corresponding to
the regularization term is denoted as εreg

gen(∇F , n). In contrast,
for the semi-supervised Sobolev regressor, the corresponding
generalization term becomes:

εreg
gen(∇F ,m + n)

= B2
1 inf
δ>0

�
max
1≤k≤d

log N(B1,kδ,DkF , L2(S))
m + n

+ δ

�
.

It is worth noting that for every m ∈ N≥1, the inequality
ε

reg
gen(∇F ,m + n) < ε

reg
gen(∇F , n) holds. This demonstrates the

provable advantages of incorporation of unlabeled data in the
semi-supervised learning framework.

Finally, we derive convergence rates of the semi-supervised
deep Sobolev regressor.

Theorem 3 (Convergence Rates): Suppose Assumptions 1
to 6 hold. Let Ω ⊆ K ⊆ Rd be two bounded domain. Assume
that f0 ∈ C s(K) with s ∈ N≥2. Set the hypothesis class as a deep
ReQU neural network class F = N (L,W, S ) with L = O(log n)
and S = O

�
n

d
d+4s

�
. Let bf λD,S be the regularized empirical

risk minimizer defined as (10) with regularization parameter
λ = O

�
n−

s
d+4s log2 n

�
. Then it follows that

E(D,S)∼µn×νm
X

h
‖bf λD,S − f0‖2L2(µX )

i
≤ O

�
n−

2s
d+4s log4 n

�
+O

�
n

d
d+4s log4 nm−1

�
,

E(D,S)∼µn×νm
X

h
‖∇(bf λD,S − f0)‖2L2(νX )

i
≤ O

�
n−

s
d+4s log2 n

�
+O

�
n

d+s
d+4s log2 nm−1

�
.

Here the constant behind the big O notation is independent
of n.

For the number of unlabeled data m sufficiently large,
the convergence rate of the semi-supervised deep Sobolev
regressor tends to the rate derived in Theorem 2.

VI. APPLICATIONS AND NUMERICAL EXPERIMENTS

In this section, we demonstrate the effectiveness of our
proposed SDORE in the context of derivative estimation, and
nonparametric variable selection.

A. Derivative Estimation

In this section we give a one-dimensional example,
and a detailed example in two dimensions is shown in
Appendix F-A.

Example 1: Let the regression function be f0(x) = 1+36x2−

59x3+21x5+0.5 cos(πx). The labeled data pairs are generated
from a regression model Y = f0(X) + ξ, where X is sampled
from the uniform distribution on [0, 1], and ξ is sampled
from a Gaussian distribution N(0, σ2). Here the variance σ2 is
determined by a given signal-to-noise ratio E[ f 2

0 (X)]
σ2 = 30. The

unlabeled data are also drawn from the uniform distribution
on [0, 1]. The regularization parameter is set as λ = 0.005.

To demonstrate the effectiveness of SDORE in scenario
where only few labeled sample is available, we conducted
SDORE using 40 labeled data pairs and an additional
1000 unlabeled samples. The comparisons with the least-
squares regression are presented in Figure 1, which includes
point-wise comparisons of function values and derivatives. In
the upper panel, the least-squares estimator generally matches
the target function. However, the least-squares estimator fits
the noise in the data rather than the underlying patterns
near the left and right endpoints. Also, the lower panel shows
that its estimated derivatives is inaccurate and unstable near
the left and right endpoints. In comparison, our SDORE
method successfully estimates the regression function and its
derivatives simultaneously, and the regularization avoids the
overfitting on the primitive function.

The errors in derivative estimates by SDORE are more
pronounced near the interval boundary. This is primarily
due to the lack of observations of function values outside
the intervals, preventing accurate estimation of the boundary
derivatives. From a theoretical perspective, the convergence of
the derivative in L2-norm is guaranteed by Theorem 1. How-
ever, this theorem does not provide guarantees for accuracy
on the boundary. Estimating the boundary error requires the
interior estimation of second-order derivatives, as outlined in
the trace theorem [72, Theorem 1 in Section 5.5].
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Fig. 1. Numerical results of Example 1. (left) Scatter plot of noisy observa-
tions (paired data used for supervised learning), line plot of the ground-truth
regression function and its values predicted by least-squares (LS) regression
and SDORE. (right) The ground truth derivative function and its estimated
values by LS and SDORE.

B. Nonparametric Variable Selection

Deep neural network is a widely utilized tool in nonpara-
metric statistics and machine learning. It effectively captures
the nonlinear relationship between the covariate vector and the
corresponding label. However, the interpretability of neural
network estimators has faced significant criticism. This is
primarily due to the inability to determine the relevance of
variables in the covariate vector and quantify their impact on
the neural network’s output.

In this section, we propose a novel approach to address this
issue by measuring the importance of a variable through its
corresponding partial derivatives. Leveraging the deep Sobolev
regressor, we introduce a nonparametric variable selection
technique with deep neural networks. Remarkably, our method
incorporates variable selection as a natural outcome of the
regression process, eliminating the need for the design of a
separate algorithm for this purpose.

Before proceeding, we impose additional sparsity structure
on the underlying regression function, that is, there exists f ∗0 :
Rd∗ → R (1 ≤ d∗ ≤ d) such that

f0(x1, . . . , xd) = f ∗0 (x j1 , . . . , x jd∗ ),
{ j1, . . . , jd∗ } ⊆ [d]. (13)

This sparsity setting has garnered significant attention in
the study of linear models and additive models, as exten-
sively discussed in [91]. In the context of reproducing kernel
Hilbert space, [23], [24], [25] introduced a nonparametric
variable selection algorithm. Nevertheless, their approach and
analysis heavily depend on the finite dimensional explicit
representation of the estimator, making it unsuitable for gen-
eralizing to deep neural network estimators.

We introduce the definition of relevant set, which was
proposed by [25, Definition 10]. The goal of the variable
selection is to estimate the relevant set.

Definition 4 (Relevant Set): Let f : Rd → R be a
differentiable function. A variable k ∈ [d] is irrelevant for
the function f with respect to the probability measure νX , if
Dk f (X) = 0 νX-almost surely, and relevant otherwise. The set
of relevant variables is defined as

I( f ) = {k ∈ [d] : ‖Dk f ‖L2(νX ) > 0}.

1) Convergence Rates and Selection Consistency:
Assumption 7 (Sparsity of the Regression Function): The

number of relevant variables is less than the dimension d, that
is, there exists a positive integer d∗ ≤ d, such that |I( f0)| = d∗.

Under Assumption 7, our focus is solely on estimat-
ing the low-dimensional function f ∗0 in (13) using deep
neural networks. Consequently, the approximation and gen-
eralization error in Lemma 5 are reliant solely on the
intrinsic dimension d∗. This implies an immediate result as
follows.

Corollary 1: Suppose Assumptions 1 to 7 hold. Let Ω ⊆

K ⊆ Rd be two bounded domain. Assume that f0 ∈ C s(K) with
s ∈ N≥2. Set the hypothesis class F as a ReQU neural network
class F = N (L,W, S ) with L = O(log n) and S = O

�
n

d∗
d∗+4s

�
.

Let bf λD be the regularized empirical risk minimizer defined
as (10) with regularization parameter λ = O

�
n−

s
d∗+4s log2 n

�
.

Then the following inequality holds

ED∼µn

h
‖bf λD − f0‖L2(µX )

i
≤ O

�
n−

s
d∗+4s log4 n

�
,

ED∼µn

h
‖∇(bf λD − f0)‖L2(νX )

i
≤ O

�
n−

s
2(d∗+4s) log2 n

�
.

The convergence rate presented in Corollary 1 is solely
determined by the intrinsic dimension d∗ and remains unaf-
fected by the data dimension d, which effectively mitigates
the curse of dimensionality when d∗ is significantly smaller
than d.

Furthermore, we establish the selection properties of the
deep Sobolev regressor, which directly follow from the con-
vergence of derivatives.

Corollary 2 (Selection Consistency): Under the same con-
ditions as Corollary 1. It follows that

lim
n→∞

Pr
n
I( f0) = I(bf λD)

o
= 1,

where λ = O
�

n−
s

d∗+4s log2 n
�

.
Corollary 2 demonstrates that, given a sufficiently large

number of data pairs, the estimated relevant set I(bf λD) is equal
to the ground truth relevant set I( f0) with high probability.
In comparison, [25, Theorem 11] only provided a one-side
consistency

lim
n→∞

Pr
n
I( f0) ⊆ I(bf λD)

o
= 1,

were unable to establish the converse inclusion.
2) Numerical Experiments: In this section, we present a

high-dimensional example which has sparsity structure to
verify the performance of SDORE in variable selection. The
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Fig. 2. Numerical results of Example 2. The empirical mean square of the
partial derivatives of the regression function f0 (which depends only on the
x1 to x4), estimated by least-squares fitting (LS, left) and SDORE (right).
The dashed line is the 75% quantile threshold for variable selection. We also
report the mean selection error (SE) for the estimated derivative function and
the root mean squared prediction error (PE) for the primitive function by each
method.

additional experiments for variable selection are shown in
Appendix F-B.

Example 2: Let the regression function be

f0(x) =

3X
i=1

4X
j=i+1

xix j.

Suppose the covariate in both labeled and unlabeled data are
sampled from the uniform distribution on [0, 1]20. The label Y
is generated from the regression model Y = f0(X)+ξ, where ξ
is the noise term sampled from a Gaussian distribution with the
signal-to-noise ratio to be 25, in the same way as Example 1.
The regularization parameter is set as λ = 1.0 × 10−2.

In real-world applications, the process of labeling data can
be prohibitively costly, resulting in a limited availability of
labeled data. Conversely, there is an abundance of unlabeled
data that is readily accessible. Hence, it becomes crucial to
leverage few labeled data alongside a substantial amount of
unlabeled data for the purpose of variable selection. Nev-
ertheless, the task of variable selection with few labeled
samples presents significant challenges. Due to the scarcity
of data points, there is a restricted range of variability within
the dataset, posing difficulties in accurately determining the
variables that hold true significance in predicting the desired
outcome.

To demonstrate the effectiveness of SDORE in this chal-
lenging scenario, we employ SDORE for the variable selection
in this example, utilizing 50 labeled data pairs and an addi-
tional sample containing 100 unlabeled covariate vectors.

Additionally, we use least-squares regression on the same data
as a comparison. Figure 2 visually presents the empirical mean
square (EMS) of estimated partial derivatives with respect to
each variable on the test set, that is, for each 1 ≤ k ≤ d,

EMSk =
1
n

nX
i=1

|Dkbf (Xi,k)|2.

Here bf is an estimator, {Xi}
n
i=1 is a set of test data, and Xi,k

represents the k-th element of Xi. The results by SDORE
reveals that the derivatives with respect to relevant variables x1
to x4 are significantly larger than those of the other variables,
while least-squares regression wrongly regards x9 as relevant
variables, possibly due to the lack of paired training sam-
ples. This shows that our proposed method can estimate the
derivatives accurately, which facilitates the variable selection.
We select the variables by setting a 75% quantile threshold
of the estimated partial derivatives. The partial derivatives
greater than the threshold is considered relevant. Additionally,
Figure 2 displays the mean selection error (SE), calculated as
the mean of the false positive rate and false negative rate as
defined by [25], as well as the root mean squared prediction
error (PE) on the regression function. Notably, the results
consistently demonstrate the superior performance of SDORE
over least-squares regression, underscoring the advantages of
incorporating unlabeled data.

Remark 1: Since in Figure 2, for SDORE, the estimated
partial derivatives with respect to the first four features is
significantly larger than others, we can choose the threshold
directly. In other application scenarios, if we can not observe
such a clear difference, we can employ the strategy such as
cross-validation (CV) to determine the number of features.
Specifically, the cross-validation process involves dividing the
dataset into a training set and a validation set independently.
The training set is used for Sobolev regression, and the
model’s performance is evaluated on the validation set. The
mean square of partial derivatives, also known as the important
score, is sorted from largest to smallest. The cross-validation
process begins by selecting the feature with the largest impor-
tant score, and adds the remaining most important features
incrementally until the accuracy in the validation set no longer
shows improvement.

VII. CONCLUSION

In this paper, we present a novel semi-supervised deep
Sobolev regressor that allows for the simultaneous estimation
of the underlying regression function and its gradient. We
provide a thorough convergence rate analysis for this estimator,
demonstrating the provable benefits of incorporating unlabeled
data into the semi-supervised learning framework. To the best
of our knowledge, these results are original contributions to
the literature in the field of deep learning, thereby enhancing
the theoretical understanding of semi-supervised learning and
gradient penalty strategy. From an application standpoint, our
approach introduces powerful new tools for nonparametric
variable selection. Moreover, our method has demonstrated
exceptional performance in various numerical examples, fur-
ther validating its efficacy.
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We would like to highlight the generality of our method
and analysis, as it can be extended to various loss functions.
In our upcoming research, we have extended the Sobolev
penalized strategy to encompass a wide range of statistical and
machine learning tasks, such as density estimation, deconvo-
lution, classification, and quantile regression. Furthermore, we
have discovered the significant role that the semi-supervised
deep Sobolev regressor plays in addressing inverse problems
related to partial differential equations. There still remains
some challenges that need to be addressed. For example,
in Theorem 2, the L2(µX)-rate O

�
n−

2s
d+4s log4 n

�
of the deep

Sobolev regressor does not attain the minimax optimality.
Additionally, the convergence rate O

�
n−

s
d+4s log2 n

�
for the

derivatives is also slower than the minimax optimal rate
O
�

n−
2(s−1)
d+2s

�
derived in [85]. Moreover, while Corollary 2

establishes selection consistency, it does not provide the rate
of convergence. Furthermore, an interesting avenue for future
research would be to investigate deep nonparametric regression
with a sparse/group sparse penalty.

APPENDIX A
SUPPLEMENTAL DEFINITIONS AND LEMMAS

In this section, we present some definitions and lemmas
for preparation. We first extend Green’s formula in Lebesgue
measure to general measures.

Lemma 8 (Green’s Formula in General Measure): Let νX

be a probability measure on Ω with density function q(x) ∈
W1,∞(Ω). Let u ∈ H1(νX) and let v ∈ H2(νX) satisfying ∇v ·n =

0 a.e. on ∂Ω, where n is the unit normal to the boundary. Then
it follows that

−(∇u,∇v)L2(νX ) = (∆v + ∇v · ∇(log q), u)L2(νX )

Proof of Lemma 8 It is straightforward that

− (∇u,∇v)L2(νX )

= −

Z
Ω

∇u · ∇vqdx

= −

Z
Ω

∇ · (∇vqu)dx +
Z

Ω

∇ · (∇vq)udx

= −

Z
∂Ω

(∇v · n)uqds +
Z

Ω

∇ · (∇vq)udx

=

Z
Ω

∆vuqdx +
Z

Ω

∇v · ∇(log q)uqdx

= (∆v, u)L2(νX ) + (∇v · ∇(log q), u)L2(νX ),

where the second equality holds from integration by parts,
the third equality follows from the divergence theorem [72,
Theorem 1 in Section C.2], and the forth one used the
assumption ∇v · n = 0 and the equality ∇(log q) = ∇q/q. �

We next present the maximal inequality for sub-Gaussian
variables.

Lemma 9: Let ξ j be σ2-sub-Gaussian for each 1 ≤ j ≤ N.
Then

E
h

max
1≤ j≤N

ξ2
j

i
≤ 4σ2(log N + 1).

Proof of Lemma 9 By Jensen’s inequality, it is straightfor-
ward that

exp
�

λ

2σ2E
h

max
1≤ j≤N

ξ2
j

i�
≤ E

"
max
1≤ j≤N

exp

 
λξ2

j

2σ2

!#
≤ NE

�
exp

�
λξ2

1

2σ2

��
≤

N
√

1 − λ
,

where the last inequality holds from [91, Theorem 2.6]
for each λ ∈ [0, 1). Letting λ = 1/2 yields the desired
inequality. �

To measure the complexity of a function class, we next
introduce the Vapnik-Chervonenkis (VC) dimension and some
associated lemmas.

Definition 5 (VC-Dimension): Let F be a class of functions
from Ω to {±1}. For any non-negative integer m, we define
the growth function of F as

ΠF (m) = max
{xi}

m
i=1⊆Ω

ˇ̌
{( f (x1), . . . , f (xm)) : f ∈ F }

ˇ̌
.

A set {xi}
m
i=1 is said to be shattered by F when

|{( f (x1), . . . , f (xm)) : f ∈ F }| = 2m.

The VC-dimension of F , denoted VCdim(F), is the size of
the largest set that can be shattered by F , that is, VCdim(F) =

max{m : ΠF (m) = 2m}. For a class F of real-valued functions,
we define VCdim(F) = VCdim(sign(F)).

The following lemma provides a VC-dimension bound for
the empirical covering number.

Lemma 10 ([92, Theorem 12.2]): Let F be a set of real
functions from Ω to the bounded interval [−B, B]. Let δ ∈
(0, 1) and D = {Xi}

n
i=1 ⊆ Ω. Then for each 1 ≤ p ≤ ∞ and

n ≥ VCdim(F), the following inequality holds

log N(δ,F , Lp(D)) ≤ c VCdim(F) log(nBδ−1),

where c > 0 is an absolute constant.
Lemma 10 demonstrates that the metric entropy of a func-

tion class is bounded by its VC-dimension. The following
lemma provides a VC-dimension bound for a deep neural net-
work classes with a piecewise-polynomial activation function,
and with a fixed architecture, i.e., the positions of the nonzero
parameters are fixed.

Lemma 11 ([93, Theorem 7]): Let N be a deep neural
network architecture with L layers and S non-zero parame-
ters. The activation function is piecewise-polynomial. Then
VCdim(N ) ≤ cLS log(S ), where c > 0 is an absolute constant.

With the help of Lemmas 10 and 11, we can bound the
metric entropy of the deep neural networks by its depth and
number of nonzero parameters as the following lemma. The
proof of this lemma is inspired by [36, Lemma 5].

Lemma 12: Let N ⊆ N (L,W, S ) be a set of deep neural
networks from Ω to the bounded interval [−B, B]. The acti-
vation function is piecewise-polynomial. Let δ ∈ (0, 1) and
D = {Xi}

n
i=1 ⊆ Ω. Then

log N(δ,N , L2(D)) ≤ cLS log(S ) log
�

nB
δ

�
,

where c > 0 is an absolute constant.
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Proof of Lemma 12: Before proceeding, it follows from the
technique of removal of inactive nodes [36, eq. (9)] that

N ⊆ N (L,W, S ) = N (L,W ∧ S , S ). (14)

For each deep neural network in N (L,W, S ), the number of
parameters T satisfies

T :=
LX
`=0

(N` + 1)N`+1 ≤ (L + 1)2−L
LY
`=0

(N` + 1)

≤

LY
`=0

(N` + 1) ≤ (W + 1)L+1 ≤ (S + 1)L+1, (15)

where the last inequality is due to (14). Then there exist�T
s

�
combinations to pick s non-zero parameters from all T

parameters, which yields a partition

N s :=

(
φ ∈ N :

LX
`=0

(‖A`‖0 + ‖b`‖0) = s

)

=
˚
N s

1 , . . . ,N s
m

	
, ms =

 
T
s

!
,

where the deep neural networks in the same subset have the
same positions of the non-zeros parameters. Consequently,

N(δ,N , L2(D))

=

SX
s=1

N(δ,N s, L2(D)) =

SX
s=1

msX
i=1

N(δ,N s
i , L

2(D))

≤

SX
s=1

msX
i=1

�
nB
δ

�VCdim(N s
i )

≤

SX
s=1

 
T
s

!�
nB
δ

�cLs log(s)

≤

SX
s=1

(S + 1)(L+1)s
�

nB
δ

�cLs log(s)

≤ (S + 1)(L+1)(S+1)
�

nB
δ

�cL(S+1) log(S )

,

where the first inequality holds from Lemma 10, and the sec-
ond inequality follows from Lemma 11. The third inequality
used the inequality

�T
s

�
≤ T s and (15). Taking logarithm on

both sides of the inequality yields the desired result. �
By an argument similar to [81, Lemma 5.7], we derive the

following lemma, which shows that the first-order derivative
of a ReQU neural network can be represented by a ReQU-
ReLU network. With the help of this lemma and Lemma 12,
we can bound the metric entropy of the class of derivatives of
ReQU networks.

Lemma 13: Let f : Rd → R be a ReQU neural network with
depth no more that L and the number of non-zero weights no
more than S. Then Dk f can be implemented by a ReQU-ReLU
neural network with depth no more that cL and the number of
non-zero weights no more than c′LS , where c and c′ are two
positive absolute constants.

Proof of Lemma 13: We prove this lemma by induction.
For simplicity of presentation, we omit the intercept terms in
this proof. Denote by %1 = max{0, x} and %2 = (max{0, x})2. It
is straightforward to verify that

%′2(z) = 2%1(z), (16)

and

yz =
1
4

�
%2(y + z) + %2(−y − z)

− %2(y − z) − %2(z − y)
�
. (17)

�
For the two-layers ReQU sub-network, the p-th element can

be defined as

f (2)
p (x) :=

X
j∈[N2]

a(2)
p j %2

0@X
i∈[N1]

a(1)
ji xi

1A .
The number of non-zero weights of f (2)

p is given by

S 2,p :=
X

j∈[N2]:a(2)
p j,0

‖(a(1)
ji )N1

i=1‖0.

By some simple calculation, we have that for each 1 ≤ k ≤ d,

Dk f (2)
p (x) =

X
j∈[N2]

a(2)
p j Dk%2

0@X
i∈[N1]

a(1)
ji xi

1A
= 2

X
j∈[N2]

a(2)
p j %1

0@X
i∈[N1]

a(1)
ji xi

1A a(1)
jk ,

where the last equality holds from (16). Thus Dk f (2)
p can be

implemented by a ReLU network with 2 layers and the number
of non-zero weights is same to f (2)

p , that is, S ′,k2,p = S 2,p.
For the three layers ReQU sub-network, by a same argu-

ment, we have

f (3)
p (x) :=

X
j∈[N3]

a(3)
p j %2( f (2)

j (x)),

the number of non-zeros weights of which is

S 3,p :=
X

j∈[N3]:a(3)
p j,0

S 2, j.

Then its derivatives are given by

Dk f (3)
p (x) =

X
j∈[N3]

a(3)
p j Dk%2( f (2)

j (x))

= 2
X
j∈[N3]

a(3)
p j %1( f (2)

j (x))Dk f (2)
j (x)

=
1
2

X
j∈[N3]

a(3)
p j

n
%2

�
%1( f (2)

j (x)) + Dk f (2)
j (x)

�
+ %2

�
− %1( f (2)

j (x)) − Dk f (2)
j (x)

�
− %2

�
%1( f (2)

j (x)) − Dk f (2)
j (x)

�
− %2

�
− %1( f (2)

j (x)) + Dk f (2)
j (x)

�o
,

where the second equality holds from (16) and the last one is
due to (17). This implies that Dk f (3)

p can be implemented by a
ReQU-ReLU mixed network with 4 layers. Furthermore, the
number of non-zero weights of Dk f (3)

p is given by

S ′,k3,p :=
X

j∈[N3]:a(3)
p j,0

�
S 2, j + S ′,k2, j + 12

�
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≤
X

j∈[N3]:a(3)
p j,0

�
S 2, j + 13S ′,k2, j

�
= 14

X
j∈[N3]:a(3)

p j,0

S 2, j = 14S 3,p. (18)

We claim that the depth of Dk f (`−1)
p is no more than 2` − 2

and the number of non-zero weights satisfies

S ′,k`,p ≤ 13`S `,p, 3 ≤ ` ≤ L. (19)

The case of ` = 3 has be shown in (18), and it remains to
verify that this inequality also holds for `, provided that (19)
holds for ` − 1.

According to (19), suppose that Dk f (`−1)
j has 2(` − 1) − 2

layers and no more than 13(` − 1)S ′,k`−1,p non-zero weights for
j ∈ [N`−1]. Notice the p-th element of the `-th layer are given
by

f (`)
p (x) :=

X
j∈[N`]

a(`)
p j%2( f (`−1)

j (x)),

the number of non-zeros weights of which is

S `,p :=
X

j∈[N`]:a
(`)
p j,0

S `−1, j.

Then its derivatives are defined as

Dk f (`)
p (x)

=
X
j∈[N`]

a(`)
p j Dk%2( f (`−1)

j (x))

= 2
X
j∈[N`]

a(`)
p j%1( f (`−1)

j (x))Dk f (`−1)
j (x)

=
1
2

X
j∈[N`]

a(`)
p j

n
%2

�
%1( f (`−1)

j (x)) + Dk f (`−1)
j (x)

�
+ %2

�
− %1( f (`−1)

j (x)) − Dk f (`−1)
j (x)

�
− %2

�
%1( f (`−1)

j (x)) − Dk f (`−1)
j (x)

�
− %2

�
− %1( f (`−1)

j (x)) + Dk f (`−1)
j (x)

�o
.

Hence Dk f (`)
p has 2(` − 1) − 2 + 2 layers and the number of

non-zero weights of Dk f (`)
p is given by

S ′,k`,p :=
X

j∈[N`]:a
(`)
p j,0

�
S `−1, j + S ′,k`−1, j + 12

�
≤

X
j∈[N`]:a

(`)
p j,0

�
S `−1, j + 13(` − 1)S `−1, j + 12S `−1, j

�
= 13S `,p,

which deduces (19) for `. Therefore, we complete the proof.
Remark 2: Notice that both ReLU and ReQU are piecewise-

polynomial activation functions. By the proof of Lemma 11
in [93, Theorem 7], it is apparent that the VC-dimension
bounds also hold for ReQU-ReLU neural networks, which are
constructed in Lemma 13. In addition, see [81, Theorem 5.1]
for a complete proof of the VC-dimension bound of ReQU-
ReLU networks.

Combining Lemmas 12 and 13 yields the following results.

Lemma 14: Let N ⊆ N (L,W, S ) be a set of deep neural
networks from Ω to the bounded interval [−B, B]. The acti-
vation function is piecewise-polynomial. Let δ ∈ (0, 1) and
D = {Xi}

n
i=1 ⊆ Ω. Then

log N(δ,DkN , L2(D)) ≤ cL2S log(S ) log
�

nB
δ

�
,

where c > 0 is an absolute constant.
We conclude this section by introducing an approximation

error bound for deep ReQU neural networks.
Lemma 15 (Approximation Error): Let Ω ⊆ K ⊆ Rd be

two bounded domain. For each φ ∈ C s(K) with s ∈ N≥1,
there exists a ReQU neural network f with the depth and the
number of nonzero weights no more than dblog2 Nc + d and
C′Nd, respectively, such that 0 ≤ k ≤ min{s,N},

inf
f∈F
‖ f − φ‖Ck(Ω) ≤ CN−(s−k)‖φ‖Cs(K),

where C and C′ are constants independent of N.
Proof of Lemma 15 We first approximate the target function

φ ∈ C s(K) by polynomials. According to [94, Theorem 2], for
each N ∈ N, these exists a polynomial pN of degree at most
N on Rd such that for 0 ≤ |γ| ≤ min{s,N},

sup
x∈K
|Dγ(φ(x) − pN(x))|

≤
C

N s−|γ|

X
|α|≤s

sup
x∈K
|Dαφ(x)|, (20)

where C is a positive constant depending only on d, s and
K. Applying [79, Theorem 3.1], one obtains that there exists
a ReQU neural network f with the depth dblog2 Nc + d and
nonzero weights no more than C′Nd, such that

f = pN , (21)

where C′ is a constant independent of N. Combining (20) and
21 yields

‖ f − φ‖Ck(Ω) ≤ sup
x∈K
|Dγ( f (x) − pN(x))|

≤ CN−(s−k)‖φ‖Cs(K),

for each 0 ≤ k ≤ min{s,N}. This completes the proof. �

APPENDIX B
PROOFS OF RESULTS IN SECTION III

Proofs of theoretical results in Section III are shown in this
section.

Proof of Lemma 1 By (7) and the standard variational theory
[72], it is sufficient to focus on the variational problem

B( f λ, g) = ( f0, g)L2(µX ), ∀g ∈ H1(νX), (22)

where the bilinear form B : H1(νX) × H1(νX)→ R is defined
as

B( f , g) := λ(∇ f ,∇g)L2(νX ) + ( f , g)L2(µX ).

It is straightforward to verify the boundedness and coercivity
of the bilinear form from Assumption 1, that is,

|B( f , g)| ≤ (λ ∨ ζ−1/2)‖ f ‖H1(νX )‖g‖H1(νX ),
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B( f , f ) ≥ (λ ∧ κ−1/2)‖ f ‖H1(νX ),

for each f , g ∈ H1(νX). Further, since that f0 ∈ L2(µX), the
functional F : H → R, g 7→ ( f0, g)L2(µX ) is bounded and linear.
Then according to Lax-Milgram theorem [72, Theorem 1 in
Chapter 6.2], there exists a unique solution f λ ∈ H1(νX) to
the varitional problem (22). This completes the proof of the
uniqueness. See [95, Theorem 2.4.2.7] for the proof of the
higher regularity of the solution. �

APPENDIX C
PROOFS OF RESULTS IN SECTION IV

In this section, we demonstrate proofs of theoretical results
in Section IV, including Lemma 2, Lemma 3 and Theo-
rem 1. The proof of Lemma 2 uses the technique of offset
Rademacher complexity, which has been investigated by [96].

Proof of Lemma 2 Recall the population excess risk R( f )
and the empirical excess risk bRD( f ) defined in the proof of
Lemma 5. We further define the regularized excess risk and
regularized empirical risk as

Rλ( f ) := R( f ) + λ‖∇ f ‖2L2(νX ),bRλ
D( f ) := bRD( f ) + λ‖∇ f ‖2L2(νX ).

It suffices to shown that

ED

h
Rλ(bf λD)

i
. inf

f∈F
Rλ( f )

+
B2

0 + σ2

log−1 n
inf
δ>0

�
2 log N(B0δ,F , L2(D))

n
+ δ

�
. (23)

Before proceeding, we provide the proof sketch. Firstly, in
Step (I), we show that

ED

h
Rλ(bf λD) − 2bRλ

D(bf λD)
i

= ED

h
R(bf λD) − 2bRD(bf λD)

i
≤ cB2

0 inf
δ>0

�
2 log N(B0δ,F , L2(D))

n
+ δ

�
, (24)

where c is an absolute positive constant. It remains to consider
the regularized empirical risk. According to (1), we havebLλD(bf λD)

= bRλ
D(bf λD) −

2
n

nX
i=1

ξi(bf λD(Xi) − f0(Xi)) + E

"
1
n

nX
i=1

ξ2
i

#
.

Taking expectation with respect to D ∼ µn on both sides of
the equality yields that for each f ∈ F ,

ED

hbRλ
D(bf λD)

i
= ED

hbLλD( f )
i
+ 2ED

"
1
n

nX
i=1

ξibf λD(Xi)

#
− E

"
1
n

nX
i=1

ξ2
i

#
≤ Rλ( f ) +

1
2
ED

hbRD(bf λD)
i

+ c(B2
0 + σ2) inf

δ>0

�
2 log N(B0δ,F , L2(D))

n
+ δ

�
,

which impliesbRλ
D(bf λD) ≤ 2Rλ( f )

+ 2c(B2
0 + σ2) inf

δ>0

�
2 log N(B0δ,F , L2(D))

n
+ δ

�
, (25)

where c is an absolute positive constant. Here the inequality
invokes

ED

"
1
n

nX
i=1

ξibf λD(Xi)

#
≤

1
4
ED

hbRD(bf λD)
i

+
8σ2

n
inf
δ>0

�
log N(B0δ,F , L2(D))

n
+ δ

�
+ 2(B2

0 + σ2)δ, (26)

which is obtained in Step (II). Combining (24) and (25)
obtains (23).

Step (I). Given a ghost sample D′ = {(X′i ,Y
′
i )}ni=1, where

{X′i }
n
i=1 are independently drawn from µX . Further, the ghost

sample D′ is independent of D = {(Xi,Yi)}ni=1. Let ε = {εi}
n
i=1

be a set of Rademacher variables and independent of D and
D′. Since that bf λD ∈ F , by the technique of symmetrization,
we have

ED

h
R(bf λD) − 2bRD(bf λD)

i
≤ ED

h
sup
f∈F

R( f ) − 2bRD( f )
i

= ED

h
sup
f∈F
ED′

"
1
n

nX
i=1

( f (X′i ) − f0(X′i ))
2

#
−

2
n

nX
i=1

( f (Xi) − f0(Xi))2
i

≤ EDED′
h

sup
f∈F

1
n

nX
i=1

( f (X′i ) − f0(X′i ))
2

−
2
n

nX
i=1

( f (Xi) − f0(Xi))2
i

= EDED′
h

sup
f∈F

3
2n

nX
i=1

( f (X′i ) − f0(X′i ))
2

−
1
2n

nX
i=1

( f (X′i ) − f0(X′i ))
2

−
3
2n

nX
i=1

( f (Xi) − f0(Xi))2

−
1
2n

nX
i=1

( f (Xi) − f0(Xi))2
i

≤ EDED′
h

sup
f∈F

3
2n

nX
i=1

( f (X′i ) − f0(X′i ))
2

−
1

8B2
0n

nX
i=1

( f (X′i ) − f0(X′i ))
4

−
3
2n

nX
i=1

( f (Xi) − f0(Xi))2

−
1

8B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
i

= EDEε

h
sup
f∈F

3
n

nX
i=1

εi( f (Xi) − f0(Xi))2
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−
1

4B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
i
, (27)

where the second inequality follows from the convexity of
supremum and Jensen’s inequality, and the third inequality is
owing to the fact that 0 ≤ ( f (Xi) − f0(Xi))2 ≤ 4B2

0 for each
f ∈ F .

Let δ > 0 and let Fδ be an L2(D) (B0δ)-cover of F
satisfying |Fδ| = N(B0δ,F , L2(D)). Then it follows from
Cauchy-Schwarz inequality that for each f ∈ F , there exists
fδ ∈ Fδ such that

1
n

nX
i=1

εi( f (Xi) − f0(Xi))2 −
1
n

nX
i=1

εi( fδ(Xi) − f0(Xi))2,

≤

�1
n

nX
i=1

( f (Xi) + fδ(Xi) − 2 f0(Xi))2

× ( f (Xi) − fδ(Xi))2
�1/2

 
1
n

nX
i=1

ε2
i

!1/2

≤ 4B2
0δ.

By a same argument, we obtain

1
B2

0n

 
−

nX
i=1

( f (Xi) − f0(Xi))4 +

nX
i=1

( fδ(Xi) − f0(Xi))4

!
≤ 32B2

0δ.

Combining (42) with above two inequalities yields

ED

h
R(bf λD) − 2bRD(bf λD)

i
− 20B2

0δ

≤ EDEε

h
max
f∈Fδ

3
n

nX
i=1

εi( f (Xi) − f0(Xi))2

−
1

4B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
i
. (28)

In order to estimate the expectation in (28), we consider the
following probability conditioning on D = {(Xi,Yi)}ni=1

Prε
n3

n

nX
i=1

εi( f (Xi) − f0(Xi))2

> t +
1

4B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
o
.

For a fixed sample D = {(Xi,Yi)}ni=1, the random variables
{εi( f (Xi) − f0(Xi))2}ni=1 are independent and satisfy

Eε
�
εi( f (Xi) − f0(Xi))2� = 0,

and for each 1 ≤ i ≤ n,

−( f (Xi) − f0(Xi))2 ≤ εi( f (Xi) − f0(Xi))2

≤ ( f (Xi) − f0(Xi))2.

Consequently, it follows from Hoeffding’s inequality [97,
Lemma D.2] that

Prε
n3

n

nX
i=1

εi( f (Xi) − f0(Xi))2

> t +
1

4B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
o

≤ exp

0B@−
�

nt
3 + 1

12B2
0

Pn
i=1( f (Xi) − f0(Xi))4

�2

2
Pn

i=1( f (Xi) − f0(Xi))4

1CA
≤ exp

�
−

nt
18B2

0

�
,

where we used the numeric inequality that (a+ y)2/y ≥ 4a for
each a > 0. Then with the aid of the above estimate of the tail
probability, it follows that

Eε

h
max
f∈Fδ

3
n

nX
i=1

εi( f (Xi) − f0(Xi))2

−
1

4B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
i

≤ T + N(B0δ,F , L2(D))
Z ∞

T
exp

�
−

nt
18B2

0

�
dt

= T +
18B2

0

n
N(B0δ,F , L2(D)) exp

�
−

nT
18B2

0

�
.

By setting T = 18B2
0 log N(B0δ,F , L2(D))n−1, we deduces

Eε

h
max
f∈Fδ

3
n

nX
i=1

εi( f (Xi) − f0(Xi))2

−
1

4B2
0n

nX
i=1

( f (Xi) − f0(Xi))4
i

≤
18B2

0

n
(1 + log N(B0δ,F , L2(D))). (29)

Combining (28) and (29) implies that

ED

h
R(bf λD) − 2bRD(bf λD)

i
≤

18B2
0

n
(1 + log N(B0δ,F , L2(D))) + 20B2

0δ. (30)

This completes the proof of (24).
Step (II). Recall the L2(D) (B0δ)-cover Fδ of the hypothesis

class F . There exists fδ ∈ Fδ such that

1
n

nX
i=1

| fδ(Xi) − bf λD(Xi)|2 ≤ (B0δ)2,

which implies

ED

"
1
n

nX
i=1

ξi(bf λD(Xi) − fδ(Xi))

#

≤ E1/2
D

"
1
n

nX
i=1

ξ2
i

#
E1/2
D

"
1
n

nX
i=1

(bf λD(Xi) − fδ(Xi))2

#
≤ B0σδ, (31)

and bR1/2
D ( fδ)

≤

 
1
n

nX
i=1

( fδ(Xi) − bf λD(Xi))2

!1/2

+bR1/2
D (bf λD)
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≤ B0δ+bR1/2
D (bf λD), (32)

where we used Cauchy-Schwarz inequality and Assumption 2.
Consequently, we have

ED

"
1
n

nX
i=1

ξibf λD(Xi)

#

= ED

"
1
n

nX
i=1

ξi(bf λD(Xi) − f0(Xi))

#

≤ ED

"
1
n

nX
i=1

ξi( fδ(Xi) − f0(Xi))

#
+ B0σδ

≤ ED

"bR1/2
D (bf λD) + B0δ

√
n

ψ( fδ)

#
+ B0σδ

≤

�
E1/2
D

hbRD(bf λD)
i
+ B0δ

� 1
√

n
E1/2
D

h
ψ2( fδ)

i
+ B0σδ

≤
1
4
ED

hbRD(bf λD)
i
+

2
n
ED

h
ψ2( fδ)

i
+

1
4

B2
0δ

2 + B0σδ. (33)

Here, the first inequality holds from (31), the second inequality
is from (32), where

ψ( fδ) :=
Pn

i=1 ξi( fδ(Xi) − f0(Xi))
√

nbR1/2
D ( fδ)

.

The third inequality follows from Cauchy-Schwarz inequality,
while the last one is owing to the inequality ab ≤ a2/4 + b2

for a, b > 0. Observe that for each fixed f independent of ξ,
the random variable ψ( f ) is sub-Gaussian with variance proxy
σ2. Then using Lemma 9 gives that

Eξ

h
ψ2( fδ)

i
≤ Eξ

h
max
f∈Fδ

ψ2( f )
i
≤ 4σ2(log |Fδ|+ 1). (34)

Combining (33) and (34) yields (26).
�

Proof of Lemma 3 Using Lemma 15, by setting k = 0,
we obtain the estimate in L2(µX)-norm. Further, setting k = 1
yields the estimate for the first-order derivative. This completes
the proof. �

Proof of Theorem 1 According to Lemma 4.2, we set the
hypothesis class F as ReQU neural networks F = N (L, S )
with L = O(log N) and S = O(Nd). Then there exists f ∈ F
such that ‖ f − φ‖L2(µX ) ≤ CN−s and ‖∇ f ‖L2(νX ) ≤ C. By using
Lemma 12 and set δ = 1/n, we find

log N(B0n−1,F , L2(D))

. LS log S log n . Nd log2 N log n.

Substituting these estimates into Lemma 2 yields

ED

h
‖bf λD − f0‖2L2(µX )

i
. CN−2s + Cλ+ C log n

Nd log2 N
n log−1(n)

.

Letting N = O
�

n
1

d+2s

�
and λ = O

�
n−

2s
d+2s log3 n

�
deduces the

desired result. �

APPENDIX D
PROOFS OF RESULTS IN SECTION V

In this section, we show proofs of theoretical results in
Section V. The proofs for the deep Sobolev regressor are
shown in Section D-A, and proofs for semi-supervised deep
Sobolev regressor are shown in Section D-B.

Proof of Lemma 4 It follows from (22) that

λ(∇( f λ − f0),∇h)L2(νX ) + ( f λ − f0, h)L2(µX )

= λ(∆ f0 + ∇ f0 · ∇(log q), h)L2(νX ), ∀h ∈ H1(νX),

where we used Lemma 8 and Assumption 4. By setting h =

f λ − f0 ∈ H1(νX) and using Cauchy-Schwarz inequality, we
derive

λ‖∇( f λ − f0)‖2L2(νX ) + ‖ f
λ − f0‖2L2(µX )

≤ λ‖∆ f0 + ∇ f0 · ∇(log q)‖L2(νX )‖ f λ − f0‖L2(νX )

≤ λκ1/2‖∆ f0 + ∇ f0 · ∇(log q)‖L2(νX )

× ‖ f λ − f0‖L2(µX ) (35)

which implies immediately

‖ f λ − f0‖L2(µX ) ≤ λκ
1/2‖∆ f0 + ∇ f0 · ∇(log q)‖L2(νX ). (36)

Substituting (36) into (35) deduces the estimate for the deriva-
tive, which completes the proof. �

A. Deep Sobolev Regressor

Proof of Lemma 5 For simplicity of notation, we define
the empirical inner-product and norm based on the sample
D = {(Xi,Yi)}ni=1, respectively, as

(u, v)L2(D) =
1
n

nX
i=1

u(Xi)v(Xi),

‖u‖2L2(D) =
1
n

nX
i=1

u2(Xi),

for each u, v ∈ L∞(µX). Then we define the excess risk and its
empirical counterpart, respectively, as

R( f ) = ‖ f − f0‖2L2(µX ) and bRD( f ) = ‖ f − f0‖2L2(D).

The proof is divided into five parts which are denoted by (I)
to (V):

(I) We first relate the excess risk with its empirical coun-
terpart:

ED

h
R(bf λD) −bRD(bf λD)

i
≤ 4B2

0

(�
2 log N(B0δ,F , L2(D))

n

� 1
2

+ δ

)
. (37)

(II) We next derive the following inequality for preparation:

ED

"
1
n

nX
i=1

ξibf λD(Xi)

#

≤
B2

0 + σ2

log−1 n

(�
2 log N(B0δ,F , L2(D))

n

� 1
2

+ δ

)
. (38)
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(III) With the help of variational inequality, we obtain the
following inequality:

λED

h
‖∇(bf λD − f0)‖2L2(νX )

i
+ ED

hbRD(bf λD)
i

≤
1
8
ED

h
R(bf λD)

i
+ 2ED

"
1
n

nX
i=1

ξibf λD(Xi)

#
+ c

n
βλ2 + εapp(F , λ)

o
, (39)

where c is an absolute positive constant. Here the
constant β and the approximation error εapp(F , λ) is
defined as

β = κ
n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
,

εapp(F , λ)

= inf
f∈F

n
‖ f − f0‖2L2(µX ) + λ‖∇( f − f0)‖2L2(νX )

o
.

(IV) Combining (37), (38) and (39), we obtain an estimate
for L2(µX)-error:

ED

h
‖bf λD − f0‖2L2(µX )

i
. βλ2 + εapp(F , λ) + εgen(F , n), (40)

and an estimate for L2(νX)-error of the gradient:

ED

h
‖∇(bf λD − f0)‖2L2(νX )

i
. βλ+

εapp(F , λ)
λ

+
εgen(F , n)

λ
. (41)

Here the generalization error εgen(F , n) is defined as

εgen(F , n)

=
B2

0 + σ2

log−1 n
inf
δ>0

(�
2 log N(B0δ,F , L2(D))

n

� 1
2

+ δ

)
.

Step (I). Given a ghost sample D′ = {(X′i ,Y
′
i )}ni=1, where

{X′i }
n
i=1 are independently and identically drawn from µX . Fur-

ther, the ghost sample D′ is independent of D = {(Xi,Yi)}ni=1.
Let ε = {εi}

n
i=1 be a set of Rademacher variables and indepen-

dent of D and D′. Since that bf λD ∈ conv(F), by the technique
of symmetrization, we have

ED

h
R(bf λD) −bRD(bf λD)

i
≤ ED

h
sup

f∈conv(F )
R( f ) −bRD( f )

i
= ED

h
sup

f∈conv(F )
ED′

"
1
n

nX
i=1

( f (X′i ) − f0(X′i ))
2

#
−

1
n

nX
i=1

( f (Xi) − f0(Xi))2
i

≤ EDED′
h

sup
f∈conv(F )

1
n

nX
i=1

( f (X′i ) − f0(X′i ))
2

−
1
n

nX
i=1

( f (Xi) − f0(Xi))2
i

= EDED′Eε

h
sup

f∈conv(F )

1
n

nX
i=1

εi
�
( f (X′i ) − f0(X′i ))

2

− ( f (Xi) − f0(Xi))2�i

= 2EDEε

"
sup

f∈conv(F )

1
n

nX
i=1

εi( f (Xi) − f0(Xi))2

#

≤ 4B0EDEε

"
sup

f∈conv(F )

1
n

nX
i=1

εi( f (Xi) − f0(Xi))

#

= 4B0EDEε

"
sup

f∈conv(F )

1
n

nX
i=1

εi f (Xi)

#

= 4B0EDEε

"
sup
f∈F

1
n

nX
i=1

εi f (Xi)

#
, (42)

where the second inequality follows from the convexity of
supremum and Jensen’s inequality, and the third inequal-
ity holds from Ledoux-Talagrand contraction inequality [97,
Lemma 5.7] and the fact that 0 ≤ | f (Xi) − f0(Xi)| ≤ 2B0 for
each f ∈ conv(F) and each 1 ≤ i ≤ n. The last equality invokes
the fact that the Rademacher complexity of the convex hull of
F is equal to that of F .

Let δ > 0 and let Fδ be an L2(D) (B0δ)-cover of F
satisfying |Fδ| = N(B0δ,F , L2(D)). Then it follows from
Cauchy-Schwarz inequality that for each f ∈ F , there exists
fδ ∈ Fδ such that

1
n

nX
i=1

εi f (Xi) −
1
n

nX
i=1

εi fδ(Xi)

≤

 
1
n

nX
i=1

ε2
i

!1/2  
1
n

nX
i=1

( f (Xi) − fδ(Xi))2

!1/2

≤ B0δ.

Combining (42) with the above inequality yields

ED

h
R(bf λD) −bRD(bf λD)

i
≤ 4B0EDEε

"
sup
f∈Fδ

1
n

nX
i=1

εi f (Xi)

#
+ 4B2

0δ

≤ 4B2
0

�
2 log |Fδ|

n

� 1
2

+ 4B2
0δ

= 4B2
0

�
2 log N(B0δ,F , L2(D))

n

� 1
2

+ 4B2
0δ, (43)

where the last inequality holds from Massart’s lemma [97,
Theroem 3.7]. This completes the proof of (37).

Step (II). According to [98, Lemma 4], the Gaussian com-
plexity can be bounded by the Rademacher complexity, that
is,

ED

"
1
n

nX
i=1

ξibf λD(Xi)

#

≤ ED

"
sup

f∈conv(F )

1
n

nX
i=1

ξi f (Xi)

#

≤ σ(log n)EDEε

"
sup

f∈conv(F )

1
n

nX
i=1

εi f (Xi)

#
, (44)

where ε = {εi}
n
i=1 is a set of Rademacher variables and

independent of D. By the same argument as (42) and (43),
we have

EDEε

"
sup

f∈conv(F )

1
n

nX
i=1

εi f (Xi)

#
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= EDEε

"
sup
f∈F

1
n

nX
i=1

εi f (Xi)

#

≤ B0

�
2 log N(B0δ,F , L2(D))

n

� 1
2

+ δ. (45)

Combining (44) and (45) completes the proof of (38).
Step (III). For each element f ∈ conv(F), by the convexity

of conv(F) we have bf λD + t( f − bf λD) ∈ conv(F) for each t ∈
[0, 1]. Now the optimality of bf λD yields that for each t ∈ [0, 1]

bLλD(bf λD) −bLλD(bf λD + t( f − bf λD)) ≤ 0,

which implies

lim
t→0+

1
t

�bLλD(bf λD) −bLλD(bf λD + t( f − bf λD))
�

= λ(∇bf λD,∇(bf λD − f ))L2(νX )

+
1
n

nX
i=1

(bf λD(Xi) − Yi)(bf λD(Xi) − f (Xi)) ≤ 0.

Therefore, it follows from (1) that for each f ∈ conv(F),

λ(∇bf λD,∇(bf λD − f ))L2(νX ) + (bf λD − f0, bf λD − f )L2(D)

≤
1
n

nX
i=1

ξi(bf λD(Xi) − f (Xi)). (46)

For the first term in the left-hand side of (46), it follows from
the linearity of inner-product that

λ(∇bf λD,∇(bf λD − f ))L2(νX )

= λ(∇(bf λD − f0) + ∇ f0,∇(bf λD − f0) − ∇( f − f0))L2(νX )

= λ‖∇(bf λD − f0)‖2L2(νX ) + λ(∇ f0,∇(bf λD − f ))L2(νX )

− λ(∇(bf λD − f0),∇( f − f0))L2(νX ). (47)

Then using Lemma 8 and Assumption 4, one obtains easily

− λ(∇ f0,∇(bf λD − f ))L2(νX )

= λ(∆ f0, bf λD − f )L2(νX )

+ λ(∇ f0 · ∇(log q), bf λD − f )L2(νX )

≤ λκ1/2
n
‖∆ f0‖L2(νX ) + ‖∇ f0 · ∇(log q)‖L2(νX )

o
×

n
R1/2(bf λD) + ‖ f − f0‖L2(µX )

o
≤ 9λ2κ

n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
+

1
16

R(bf λD) +
1
2
‖ f − f0‖2L2(µX ), (48)

where the first inequality holds from Cauchy-Schwarz inequal-
ity and the triangular inequality, and the last inequality is due
to ab ≤ εa2 + b2/(4ε) for a, b, ε > 0. Similarly, we also find
that

λ(∇(bf λD − f0),∇( f − f0))L2(νX )

≤
λ

2
‖∇(bf λD − f0)‖2L2(νX ) +

λ

2
‖∇( f − f0)‖2L2(νX ). (49)

Using (47), (48) and (49) yields

λ

2
‖∇(bf λD − f0)‖2L2(νX )

≤ λ(∇bf λD,∇(bf λD − f ))L2(νX ) +
1

16
R(bf λD)

+

�
1
2
‖ f − f0‖2L2(µX ) +

λ

2
‖∇( f − f0)‖2L2(νX )

�
+ 9λ2κ

n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
. (50)

We next turn to consider the second term in the left-hand
side of (46). By Cauchy-Schwarz inequality and AM-GM
inequality we have

(bf λD − f0, bf λD − f )L2(D)

= bRD(bf λD) − (bf λD − f0, f − f0)L2(D)

≥
1
2
bRD(bf λD) −

1
2
bRD( f ). (51)

Combining (46), (50) and (51) and taking expectation with
respect to D ∼ µn implies the following inequality for each
f ∈ conv(F)

λ

2
ED

h
‖∇(bf λD − f0)‖2L2(νX )

i
+

1
2
ED

hbRD(bf λD)
i

≤
1

16
ED

h
R(bf λD)

i
+ ED

"
1
n

nX
i=1

ξibf λD(Xi)

#
+

�
‖ f − f0‖2L2(µX ) +

λ

2
‖∇( f − f0)‖2L2(νX )

�
+ 9λ2κ

n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
,

where we used the fact that E[bRD( f )] = R( f ) and
E
�Pn

i=1 ξi f (Xi)
�

= 0 for each fixed function f ∈ L∞(Ω). Since
that F ⊆ conv(F), it is apparent that this inequality also holds
for each element in F . Taking infimum with respect to f ∈ F
obtains the inequality (39).

Step (IV). Using (38) and (39), we have

ED

hbRD(bf λD)
i

≤
1
4
ED

h
R(bf λD)

i
+ c

n
βλ2 + εapp(F , λ) + εgen(F , n)

o
,

where c is an absolute positive constant and β is a positive
constant defined as

β = κ
n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o
.

Consequently, by the estimate in (37), we have

ED

h
R(bf λD)

i
≤ ED

hbRD(bf λD)
i
+ c′εgen(F , n)

≤
1
4
ED

h
R(bf λD)

i
+ c

n
βλ2 + εapp(F , λ)

o
+ (c + c′)εgen(F , n).

This completes the proof of (40). Finally, combining (39) and
(40) achieves (41).

�

Proof of Lemma 6 A direct conclusion of Lemma 15. �

Proof of Theorem 2 According to Lemma 5.3, we set the
hypothesis class F as ReQU neural networks F = N (L, S )
with L = O(log N) and S = O(Nd). Then there exists f ∈ F
such that

‖ f − φ‖L2(µX ) ≤ CN−s,
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‖∇( f − φ)‖L2(νX ) ≤ CN−(s−1).

By using Lemma 12 and set δ = 1/n, we find

log N(B0n−1,F , L2(D))

. LS log(S )(log n) . Nd log2 N log n. (52)

Substituting these estimates into Lemma 5 yields

ED

h
‖bf λD − f0‖2L2(µX )

i
. βλ2 + CN−2s + CλN−2(s−1)

+ C log n
�

Nd log2 N log n
n

� 1
2

.

Setting N = O
�

n
1

d+4s

�
, and letting the regularization parame-

ter be λ = O
�

n−
s

d+4s log2 n
�

deduce the desired result.

B. Semi-Supervised Deep Sobolev Regressor

Proof of Lemma 7 Before proceeding, we first define the
empirical inner-product and norm based on the sample S =

{Zi}
m
i=1 as

(u, v)L2(S) =
1
m

mX
i=1

u(Zi)v(Zi), ‖u‖2L2(S) =
1
m

mX
i=1

u2(Zi),

for each u, v ∈ L∞(νX). The proof is divided into four parts
which are denoted by (I) to (IV):

(I) By a same argument as (I) in the proof of Lemma 5, we
deduces

ES

h
‖∇(bf λD,S − f0)‖2L2(νX ) − ‖∇(bf λD,S − f0)‖2L2(S)

i
≤ εreg

gen(∇F ,m). (53)

Here the generalization error εreg
gen(∇F ,m) associated to the

regularization term are defined as

εreg
gen(∇F ,m)

= B2
1 inf
δ>0

�
max
1≤k≤d

N(B1,kδ,DkF , L2(S))
m

+ δ

�
.

(II) By the technique of symmetrization and Green’s for-
mula, it holds that

− λES

h
(∇ f0,∇(bf λD,S − f ))L2(S)

i
≤

1
16
ES

h
R(bf λD,S )

i
+ c

n
β̃λ2 + εreg

gen(∇F ,m)
o
, (54)

where c is an absolute positive constant. Here the constant β̃
is defined as

β̃ = κ
n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX ) + B2

1

o
.

(III) With the aid of the variational inequality and (54), we
have

λED,S

h
‖∇(bf λD,S − f0)‖2L2(S)

i
+ ED,S

hbRD(bf λD,S )
i

≤
1
8
ED,S

h
R(bf λD,S )

i
+ 2ED,S

"
1
n

nX
i=1

ξibf λD,S (Xi)

#
+ c

n
β̃λ2 + εapp(F , λ) + εreg

gen(∇F ,m)
o
, (55)

where c is an absolute positive constant
(IV) Applying (37), (38), (53) and (55), we conclude the

final results.
Step (I). By a same argument as Step (I) in the proof of

Lemma 5, we deduce the following inequality

ES

h
‖Dk(bf λD,S − f0)‖2L2(νX ) − ‖

bf λD,S − f0‖2L2(S)

i
≤ 4B2

1,k inf
δ>0

�
N(B1,kδ,DkF , L2(S))

m
+ δ

�
,

for each 1 ≤ k ≤ d. Summing over these equalities obtains
(53) immediately.

Step (II). Given a ghost sample S ′ = {Z′i }
m
i=1, where {Z′i }

m
i=1

are independently and identically distributed random variables
from νX . Further, the ghost sample S ′ is independent of
S = {Zi}

m
i=1. Let ε = {εi}

m
i=1 be a set of Rademacher variables

and independent of S and S ′. Then by the technique of
symmetrization, we have

ES

h
(Dk f0,Dkbf λD,S )L2(νX ) − (Dk f0,Dkbf λD,S )L2(S)

i
≤ ES

h
sup

f∈conv(F )
(Dk f0,Dk f )L2(νX ) − (Dk f0,Dk f )L2(S)

i
= ES

h
sup

f∈conv(F )
ES′

"
1
m

mX
i=1

Dk f0(Z′i )Dk f (Z′i )

#
−

1
m

mX
i=1

Dk f0(Zi)Dk f (Zi)
i

≤ ESES′
h

sup
f∈conv(F )

1
m

mX
i=1

Dk f0(Z′i )Dk f (Z′i )

−
1
m

mX
i=1

Dk f0(Zi)Dk f (Zi)
i

= ESES′Eε

h
sup

f∈conv(F )

1
m

mX
i=1

εi

�
Dk f0(Z′i )Dk f (Z′i )

− Dk f0(Zi)Dk f (Zi)
�i

= ESEε

"
sup

f∈conv(F )

1
m

mX
i=1

εiDk f0(Zi)Dk f (Zi)

#

= ESEε

"
sup
f∈F

1
m

mX
i=1

εiDk f0(Zi)Dk f (Zi)

#
, (56)

where the second inequality follows from the Jensen’s inequal-
ity, and the last equality invokes the fact that the Rademacher
complexity of the convex hull is equal to that of the original
set. According to Ledoux-Talagrand contraction inequality [97,
Lemma 5.7], we have

Eε

"
sup
f∈F

1
m

mX
i=1

εiDk f0(Zi)Dk f (Zi)

#

≤ B1,kEε

"
sup
f∈F

1
m

mX
i=1

εiDk f (Zi)

#
. (57)

Let δ > 0 and let (DkF)δ be an L2(S) (B1,kδ)-cover of DkF .
Suppose |(DkF)δ| = N(B1,kδ,DkF , L2(S)). Then it follows
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from Cauchy-Schwarz inequality that for each Dk f ∈ DkF ,
there exists (Dk f )δ ∈ (DkF)δ such that

1
m

mX
i=1

εiDk f (Zi) −
1
m

mX
i=1

εi(Dk f )δ(Zi)

≤

 
1
m

mX
i=1

ε2
i

!1/2  
1
m

mX
i=1

(Dk f (Zi) − (Dk f )δ(Zi))2

!1/2

≤ B1,kδ,

which implies

ESEε

"
sup

Dk f∈F

1
m

mX
i=1

εiDk f (Zi)

#

≤ ESEε

"
sup

Dk f∈(DkF )δ

1
m

mX
i=1

εiDk f (Zi)

#
+ B1,kδ

≤ B1,k

�
2 log N(B1,kδ,DkF , L2(S))

m

�1/2

+ B1,kδ, (58)

where the last inequality holds from Massart’s lemma [97,
Theroem 3.7]. Combining (56), (57) and (58) deduces

ES

h
(Dk f0,Dkbf λD,S )L2(νX ) − (Dk f0,Dkbf λD,S )L2(S)

i
≤ B2

1,k

�
2 log N(B1,kδ,DkF , L2(S))

m

�1/2

+ B2
1,kδ.

Summing over this equation for 1 ≤ k ≤ d yields

ES

h
(∇ f0,∇(bf λD,S − f0))L2(νX )

− (∇ f0,∇(bf λD,S − f0))L2(S)

i
≤

dX
k=1

B2
1,k inf

δ>0

(�
2 log N(B1,kδ,DkF , L2(S))

m

�1/2

+ δ

)
.

Combining this with Lemma 8 and Assumption 4, we find that
for each δ > 0,

− λES

h
(∇ f0,∇(bf λD,S − f ))L2(S)

i
≤ λES

h
− (∇ f0,∇(bf λD,S − f ))L2(νX )

i
+ λ

dX
k=1

B2
1,k

(�
2 log N(B1,kδ,DkF , L2(S))

m

�1/2

+ δ

)
= λES

h
(∆ f0, bf λD,S − f )L2(νX )

+ (∇ f0 · ∇(log q), bf λD,S − f )L2(νX )

i
+ λ

dX
k=1

B2
1,k

(�
2 log N(B1,kδ,DkF , L2(S))

m

�1/2

+ δ

)
≤ λκ1/2ES

hn
‖∆ f0 + ∇ f0 · ∇(log q)‖L2(νX )

o
×

n
R(bf λD,S )1/2 + ‖ f − f0‖L2(µX )

oi
+ λ

dX
k=1

B2
1,k

(�
2 log N(B1,kδ,DkF , L2(S))

m

�1/2

+ δ

)
≤ 9λ2κ

n
‖∆ f0‖2L2(νX ) + ‖∇ f0 · ∇(log q)‖2L2(νX )

o

+
1

16
ES

h
R(bf λD,S )

i
+

1
2
‖ f − f0‖2L2(µX ) + λ2

 
dX

k=1

B2
1,k

!

+
1
4

dX
k=1

B2
1,k

�
max
1≤k≤d

2 log N(B1,kδ,DkF , L2(S))
m

+ δ2
�
,

where the second inequality holds from Cauchy-Schwarz
inequality and Assumption 1, and the last inequality is due
to the inequality ab ≤ εa2 + b2/(4ε) for a, b, ε > 0. This
completes the proof of (54).

Step (III). For each element f ∈ conv(F), by the convexity
of conv(F) we have bf λD,S + t( f − bf λD,S ) ∈ conv(F) for each
t ∈ [0, 1]. Now the optimality of bf λD,S yields that for each
t ∈ [0, 1] bLλD,S (bf λD) −bLλD,S (bf λD,S + t( f − bf λD,S )) ≤ 0,

which implies

lim
t→0+

1
t

�bLλD,S (bf λD,S ) −bLλD,S (bf λD,S + t( f − bf λD,S ))
�

= λ(∇bf λD,S ,∇(bf λD,S − f ))L2(S)

+
1
n

nX
i=1

(bf λD,S (Xi) − Yi)(bf λD,S (Xi) − f (Xi)) ≤ 0.

Therefore, it follows from (1) that for each f ∈ conv(F),

λ(∇bf λD,S ,∇(bf λD,S − f ))L2(S)

+(bf λD,S − f0, bf λD,S − f )L2(D)

≤
1
n

nX
i=1

ξi(bf λD,S (Xi) − f (Xi)). (59)

For the first term in the left-hand side of (59), we have

λ(∇bf λD,S ,∇(bf λD,S − f ))L2(S)

= λ(∇(bf λD,S − f0) + ∇ f0,∇(bf λD,S − f0) − ∇( f − f0))L2(S)

= λ‖∇(bf λD,S − f0)‖2L2(S) + λ(∇ f0,∇(bf λD,S − f ))L2(S)

− λ(∇(bf λD,S − f0),∇( f − f0))L2(S), (60)

According to Cauchy-Schwarz inequality and AM-GM
inequality, one obtains easily

λ(∇(bf λD,S − f0),∇( f − f0))L2(S)

≤
λ

2
‖∇(bf λD,S − f0)‖2L2(S) +

λ

2
‖∇( f − f0)‖2L2(S). (61)

Using (60) and (61), and taking expectation with respect to
S ∼ νm

X yield

λ

2
ES

h
‖∇(bf λD,S − f0)‖2L2(S)

i
≤ λES

h
(∇bf λD,S ,∇(bf λD,S − f ))L2(S)

i
+
λ

2
‖∇( f − f0)‖2L2(νX )

− λES

h
(∇ f0,∇(bf λD,S − f ))L2(S)

i
.

Combining this estimate with (54) implies

λ

2
ES

h
‖∇(bf λD,S − f0)‖2L2(S)

i
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Fig. 3. Effect of the regularization technique on function fitting for a toy problem f0(x) = x2
1. (a) Landscape of the primitive function and its partial derivatives.

The train samples are plotted in black dots. (b) least-squares fitting estimation. (c) DORE estimation. (d) SDORE estimation.

≤ λES

h
(∇bf λD,S ,∇(bf λD,S − f ))L2(S)

i
+
λ

2
‖∇( f − f0)‖2L2(νX ) +

1
16
ES

h
R(bf λD,S )

i
+ c

n
β̃λ2 + εreg

gen(∇F ,m)
o
. (62)

We next turn to consider the second term in the left-hand
side of (59). By Cauchy-Schwarz inequality and AM-GM
inequality we have

(bf λD,S − f0, bf λD,S − f )L2(D)

= bRD(bf λD,S ) − (bf λD,S − f0, f − f0)L2(D)

≥
1
2
bRD(bf λD,S ) −

1
2
bRD( f ),

which implies by taking expectation with respect to D ∼ µn

that for each f ∈ F ,

1
2
ED

hbRD(bf λD,S )
i

≤
1
2

R( f ) + ED
h
(bf λD,S − f0, bf λD,S − f )L2(D)

i
. (63)

Combining (59), (62) and (63) yields (55).
Step (IV). Using (38) and (55), we have

ED,S

hbRD(bf λD,S )
i
≤

1
4
ED,S

h
R(bf λD,S )

i
+ c

n
β̃λ2 + εapp(F , λ) + εgen(F , n) + εreg

gen(∇F ,m)
o
.
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Then according to the above inequality and (37), it follows
that

ED,S

h
R(bf λD,S )

i
≤ ED,S

hbRD(bf λD,S )
i
+ c′εgen(F , n)

≤
1
2
ED,S

h
R(bf λD,S )

i
+ (2c + c′)εgen(F , n)

+ 2c
n
β̃λ2 + εapp(F , λ) + εreg

gen(∇F ,m)
o
,

which implies

ED,S

h
‖bf λD,S − f0‖2L2(µX )

i
. β̃λ2 + εapp(F , λ) + εgen(F , n) + εreg

gen(∇F ,m). (64)

Finally, combining (53), (55) and (64) completes the proof.
�

Proof of Theorem 3 According to Lemma 6, we set the
hypothesis class F as ReQU neural networks F = N (L, S )
with L = O(log N) and S = O(Nd). Then there exists f ∈ F
such that

‖ f − φ‖L2(µX ) ≤ CN−s, ‖∇( f − φ)‖L2(νX ) ≤ CN−(s−1).

By using Lemma 14 and set δ = 1/n, we find

log N(B1,kn−1,DkF , L2(D))

. L2S log S log n . Nd log3 N log n.

Substituting these estimates and (52) into Lemma 5 yields

ED

h
‖bf λD − f0‖2L2(µX )

i
. β̃λ2 + CN−2s + CλN−2(s−1)

+ C log n
�

Nd log N log n
n

� 1
2

+ C log n
Nd log3 N

m
.

Setting N = O
�

n
1

d+4s

�
, and letting the regularization parame-

ter be λ = O
�

n−
s

d+4s log2 n
�

deduce the desired result. �

APPENDIX E
PROOFS IN RESULTS IN SECTION VI

Proof of Corollary 1 A direct conclusion of Theorem 2.�

Proof of Corollary 2 By Markov’s inequality [97, Theorem
C.11], the following inequality holds for each ε > 0

lim
n→∞

Pr
n
‖Dkbf λD − Dk f0‖L2(νX ) > ε

o
≤ lim

n→∞

ED

h
‖Dkbf λD − Dk f0‖L2(νX )

i
ε

= 0, (65)

where the equality follows from Corollary 1. For each irrel-
evant variable k < I( f0), one has ‖Dk f0‖L2(νX ) = 0. Then (65)
deduces that for each ε > 0

lim
n→∞

Pr
n
‖Dkbf λD‖L2(νX ) > ε

o
≤ lim

n→∞
Pr
n
‖Dkbf λD − Dk f0‖L2(νX ) > ε

o
= 0,

which implies ‖Dkbf λD‖L2(νX ) goes to 0 in probability, and thus

lim
n→∞

Pr
n
I(bf λD) ⊆ I( f0)

o
= 1. (66)

On the other hand, for each relevant variable k ∈ I( f0), it
follows from (65) that

lim
n→∞

Pr
n
‖Dkbf λD‖L2(νX ) > ε + ‖Dk f0‖L2(νX )

o
≤ lim

n→∞
Pr
n
‖Dkbf λD − Dk f0‖L2(νX ) > ε

o
= 0,

where we used the triangular inequality. Since ‖Dk f0‖L2(νX ) > 0,
we find that for each ε > 0

lim
n→∞

Pr
n
‖Dkbf λD‖L2(νX ) > ε

o
= 1,

As a consequence,

lim
n→∞

Pr
n
I( f0) ⊆ I(bf λD)

o
= 1. (67)

Combining (66) and (67) completes the proof. �

APPENDIX F
ADDITIONAL EXPERIMENTS RESULTS

In this section, we present several supplementary numerical
examples to complement the numerical studies in Section VI.

A. Additional Examples for Derivative Estimation

Example 3: We consider a toy problem in two-dimensions,
where the support of the marginal distribution µX approxi-
mately coincides with the coordinate subspace [0, 1] × {0}.
Precisely the first element of the covariate is uniformly sam-
pled from [−1, 1], whereas the second one is drawn from
a Gaussian distribution N(0, 0.05). The underlying regres-
sion function is f0(x) = x2

1, and labels are generated by
Y = f0(X) + ξ, where the noise term ξ ∼ N(0, 0.1). The
regularization parameter is set as λ = 1.0 × 10−4.

In all cases the accuracy on the supp(µX) is high, see
Figure 3 (top), but the least-squares regressor fails to extend
the approximation and smoothness outside the support, as the
least-squares loss is insensible to errors out of supp(µX). While
the landscape of DORE is smoother compared to the least-
squares regressor, SDORE further extends the smoothness to
[−1, 1]2 as it utilizes unlabeled samples from νX .

We examine the partial derivative estimation with respect to
x1 and x2 on [−1, 1]2 and display the result in Figure 3. As
expected, the least-squares one is unstable compared to the
DORE and SDORE. Also, we can tell from the bottom right
of Figure 3 that x2 is the irrelevant variable.

B. Additional Examples for Variable Selection

Example 4: Consider the regression function f0(x) = 2x2
1 +

ex2 +2 sin(x3)+2 cos(x4+1), with observations Y = f0(X)+ξ,
where X ∈ R10 and ξ is a white noise, sampled from a Gaussian
distribution with the signal to noise ratio to be 25. The first
four elements of X are drawn from the uniform distribution on
[0, 1], and the rest noise variables are drawn from the uniform
distribution on [0, 0.05]. The regularization parameter λ is set
as 1.0 × 10−4 for SDORE.

We repeat the process for least-squares regressor and
SDORE, respectively, and evaluate the models on a test set
with sample size 1000. We report the estimated mean square
of partial derivative by both estimators with respect to xi,
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Fig. 4. (left) Empirical mean square of the partial derivatives estimated by
least-squares regression (LS) and SDORE on a variable selection problem
in R10 where f0 is dependent on the x1 to x4. The dashed line is the 75 %
quantile threshold for variable selection. (center) Mean variable selection error
for the estimated derivative function on test set. (right) Root mean squared
prediction error for the primitive function on test set.

the mean selection error (mean of false positive rate and
false negative rate) the root mean squared prediction error
on the primitive function in Figure 4. The results indicate
least-squares regression fails to identify the correct dependent
variables and has larger prediction error. In contrast, SDORE
yields smaller prediction error, and points out that x1 to x4 are
the relevant variables.
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