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Applications of Inverse Problems

(a) Medical Imaging (b) Weather Prediction (c) Image Processing
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Mathematical Formulation of Bayesian Inverse Problems

Consider the measurement model:
Y = F (X) + n.

▶ F : Rd → Rn is a known forward map.

▶ X ∈ Rd is an unknown signal with prior density π.

▶ π is typically intractable but one has X1, . . . , XN ∼i.i.d. π.

▶ n ∈ Rn is a random noise independent of X and with known density.

Given noisy measurement Y = y, the goal of Bayesian inverse problem is to estimate the
posterior density

q(x|y) ∝ exp(−ℓy(x))π(x),

where ℓy(·) is the negative log-likelihood.
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Mainstream Methods for Bayesian Inverse Problems

Optimization-based approach
Maximum-a-posteriori (MAP): Find a signal that minimizes the posterior density:

arg max
x

log q(x|y) = arg max
x

−ℓy(x) + log π(x)

▶ Connection with Tikhonov regularization

▶ Point estimation, cannot quantify the uncertainty

Sampling-based approach
Sampling from the posterior density q(·|y):

Xy
1 , . . . , Xy

n ∼i.i.d. q(·|y).

▶ Uncertainty quantification
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Key Questions in Posterior Sampling

Q1. How to estimate the prior distribution using samples drawn from it?

▶ Manual selection of the prior: cannot capture the complex structure of the prior distribution.

▶ Generative prior (Vishal Purohit et al. 2025)

▶ Prior score matching (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

▶ · · ·

Q2. How to sample from the multi-modal posterior distribution?
▶ Langevin dynamics (Vishal Purohit et al. 2025, Zhao Ding et al. 2025)

▶ Diffusion models (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

▶ · · ·

Prior Score + Diffusion Models represent a highly promising solution!
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Diffusion Posterior Sampling

Forward process

dXt = −Xtdt +
√

2dBt, X0 ∼ π, t ∈ (0, T).

Time-reversal process

dX̄t = (X̄t + 2∇x log πT−t(X̄t))dt +
√

2dBt, X̄0 ∼ πT , t ∈ (0, T). X̄t ∼ πT−t

Posterior time-reversal process

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y))dt +

√
2dBt, X̄y

0 ∼ qT(·|y) X̄t ∼ qT−t(·|y)

How to estimate the posterior score ∇ log qt(·|y) for t ∈ (0, T)?
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Existing Approximation Methods for Posterior Score Estimation

∇ log qt(xt|y) = ∇ log p(y|xt) +∇ log πt(xt)

p(y|xt) =
∫

p(y|x0, xt)p(x0|xt)dx0

=
∫

exp(−ℓy(x0))p(x0|xt)dx0

The time-dependent likelihood p(y|xt) is intractable.

x0

xty

p(xt |x
0 )p(

y|x
0)

p(x
0 |xt )

Approximation Methods

DPS (Hyungjin Chung et al. 2023) Dirac approximation p(x0|xt) ≈ δE[X0|xt ](x0)

LGD (Jiaming Song et al. 2023) Gaussian approximation p(x0|xt) ≈ N(E[X0|xt], r2
t Id)

· · · · · · · · ·

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 8/34



Existing Approximation Methods for Posterior Score Estimation

∇ log qt(xt|y) = ∇ log p(y|xt) +∇ log πt(xt)

p(y|xt) =
∫

p(y|x0, xt)p(x0|xt)dx0

=
∫

exp(−ℓy(x0))p(x0|xt)dx0

The time-dependent likelihood p(y|xt) is intractable.

x0

xty

p(xt |x
0 )p(

y|x
0)

p(x
0 |xt )

Approximation Methods

DPS (Hyungjin Chung et al. 2023) Dirac approximation p(x0|xt) ≈ δE[X0|xt ](x0)

LGD (Jiaming Song et al. 2023) Gaussian approximation p(x0|xt) ≈ N(E[X0|xt], r2
t Id)

· · · · · · · · ·

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 8/34



Existing Approximation Methods for Posterior Score Estimation

∇ log qt(xt|y) = ∇ log p(y|xt) +∇ log πt(xt)

p(y|xt) =
∫

p(y|x0, xt)p(x0|xt)dx0

=
∫

exp(−ℓy(x0))p(x0|xt)dx0

The time-dependent likelihood p(y|xt) is intractable.

x0

xty

p(xt |x
0 )p(

y|x
0)

p(x
0 |xt )

Approximation Methods

DPS (Hyungjin Chung et al. 2023) Dirac approximation p(x0|xt) ≈ δE[X0|xt ](x0)

LGD (Jiaming Song et al. 2023) Gaussian approximation p(x0|xt) ≈ N(E[X0|xt], r2
t Id)

· · · · · · · · ·

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 8/34



Existing Approximation Methods for Posterior Score Estimation

∇ log qt(xt|y) = ∇ log p(y|xt) +∇ log πt(xt)

p(y|xt) =
∫

p(y|x0, xt)p(x0|xt)dx0

=
∫

exp(−ℓy(x0))p(x0|xt)dx0

The time-dependent likelihood p(y|xt) is intractable.

x0

xty

p(xt |x
0 )p(

y|x
0)

p(x
0 |xt )

Approximation Methods

DPS (Hyungjin Chung et al. 2023) Dirac approximation p(x0|xt) ≈ δE[X0|xt ](x0)

LGD (Jiaming Song et al. 2023) Gaussian approximation p(x0|xt) ≈ N(E[X0|xt], r2
t Id)

· · · · · · · · ·

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 8/34



Outline

1 Introduction to Inverse Problems

2 Diffusion-based Posterior Sampling

3 Convergence Guarantee

4 Numerical Experiments

5 Concluding Remarks

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 9/34



Posterior Score Estimation via Monte Carlo

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y)︸ ︷︷ ︸

posterior score

)dt +
√

2dBt, X̄y
0 ∼ qT(·|y)

Conditional Tweedie’s formula
For each t ∈ (0, T), the score function of the posterior density satisfies

∇x log qt(x|y) = − 1
σ2

t
x +

µt

σ2
t

D(t, x, y), (x, y) ∈ Rd × Rn,

where the posterior denoisor D(t, x, y) is defined as

D(t, x, y) := E[X0|Xt = x, Y = y].

Expectation with respect to pt(x0|x, y) ∝ π(x0) exp
(
−

∥x − µtx0∥2
2

2σ2
t

− ℓy(x0)
)

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 10/34



Posterior Score Estimation via Monte Carlo

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y)︸ ︷︷ ︸

posterior score

)dt +
√

2dBt, X̄y
0 ∼ qT(·|y)

Conditional Tweedie’s formula
For each t ∈ (0, T), the score function of the posterior density satisfies

∇x log qt(x|y) = − 1
σ2

t
x +

µt

σ2
t

D(t, x, y), (x, y) ∈ Rd × Rn,

where the posterior denoisor D(t, x, y) is defined as

D(t, x, y) := E[X0|Xt = x, Y = y].

Expectation with respect to pt(x0|x, y) ∝ π(x0) exp
(
−

∥x − µtx0∥2
2

2σ2
t

− ℓy(x0)
)

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 10/34



Posterior Score Estimation via Monte Carlo

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y)︸ ︷︷ ︸

posterior score

)dt +
√

2dBt, X̄y
0 ∼ qT(·|y)

Conditional Tweedie’s formula
For each t ∈ (0, T), the score function of the posterior density satisfies

∇x log qt(x|y) = − 1
σ2

t
x +

µt

σ2
t

D(t, x, y), (x, y) ∈ Rd × Rn,

where the posterior denoisor D(t, x, y) is defined as

D(t, x, y) := E[X0|Xt = x, Y = y].

Expectation with respect to pt(x0|x, y) ∝ π(x0) exp
(
−

∥x − µtx0∥2
2

2σ2
t

− ℓy(x0)
)

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 10/34



Sampling from the posterior denoising density

▶ Langevin dynamics

dXx,y,t
0,s =

(
∇ log π(Xx,y,t

0,s ) +
µt

σ2
t
(x − µtX

x,y,t
0,s )−∇ℓy(X

x,y,t
0,s )

)
ds +

√
2dBs, s ∈ (0, S)

▶ Langevin dynamics with estimated prior score

dX̂x,y,t
0,s =

(
ŝπ(X̂

x,y,t
0,s ) +

µt

σ2
t
(x − µtX̂

x,y,t
0,s )−∇ℓy(X̂

x,y,t
0,s )

)
ds +

√
2dBs, s ∈ (0, S).

Monte Carlo approximation

▶ Estimation of the posterior score

ŝS
m(t, x, y) ≜ − x

σ2
t
+

µt

σ2
t

1
m

m

∑
i=1

X̂x,y,t
0,S,i ≈ ∇x log qt(x|y), X̂x,y,t

0,S,1, . . . , X̂x,y,t
0,S,m ∼i.i.d. p̂S

t (·|x, y).
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Algorithm 1: Posterior score estimation via Monte Carlo
Input: Measurement y, prior score estimator ŝπ , noise level t, evaluation point x, simulation

horizon S, initial density p̂0
t (·|y) for Langevin dynamics.

Output: Posterior score estimator ŝS
m(t, x, y).

1 for i = 1, . . . , m do
2 Initialize particle by X̂x,y,t

0,0,i ∼ p̂0
t (·|x, y).

3 Evolve particle to time S by simulating Langevin dynamics to obtain X̂x,y,t
0,S,i .

4 end

5 Compute the posterior denoiser estimate D̂S
m(t, x, y) using {X̂x,y,t

0,S,i}
m
i=1 via Monte Carlo

method.
6 Compute the posterior score estimate ŝS

m(t, x, y) using D̂S
m(t, x, y).

7 return ŝS
m(t, x, y)
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▶ A1. Semi-log-concavity of the posterior distribution.
For a fixed y ∈ Rn, there exist a constant α > 0, such that q0(·|y) ∈ C2(Rd) satisfies
−∇2 log q0(x0|y) ⪰ −αId for each x0 ∈ Rd.

Log-concavity of posterior denoising density
Suppose A1 holds, then for each t > 0,(µ2

t
σ2

t
− α

)
Id ⪯ −∇2

x0
log pt(x0|x, y), (x0, x) ∈ Rd × Rd.

Further, the posterior denoising density is log-concave provided that t < t̄ := 1
2 log(1 +

α−1).

Monte Carlo-based approach for posterior score estimation works for small t > 0.
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Warm-Start Strategy

Goal of warm-start: Sample from the terminal posterior density qT(·|y).

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y))dt +

√
2dBt, X̄y

0 ∼ qT(·|y)︸ ︷︷ ︸
warm-start

▶ For sufficiently large T, we can use Gaussian approximation qT(·|y) ≈ N(0, Id).

▶ However, Monte Carlo-based approach for posterior score estimation requires small T.

Warm-start strategy
Langevin dynamics with estimated posterior score:

dX̂y
T,u = ŝS

m(T, X̂y
T,u, y)du +

√
2dBu, u ∈ (0, U).

Here ŝS
m(T, ·, y) is obtained by Monte Carlo-based posterior score estimation.

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 14/34



Warm-Start Strategy

Goal of warm-start: Sample from the terminal posterior density qT(·|y).

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y))dt +

√
2dBt, X̄y

0 ∼ qT(·|y)︸ ︷︷ ︸
warm-start

▶ For sufficiently large T, we can use Gaussian approximation qT(·|y) ≈ N(0, Id).

▶ However, Monte Carlo-based approach for posterior score estimation requires small T.

Warm-start strategy
Langevin dynamics with estimated posterior score:

dX̂y
T,u = ŝS
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Algorithm 2: Warm-start for diffusion posterior sampling

Input: Measurement y, simulation horizon U, terminal density q̂0
T(·|y) for Langevin

dynamics.
Output: Sample X̂y

T,U approximately distributed according to qT(·|y).
1 Initialize particle by X̂y

T,0 ∼ q̂0
T(·|y).

2 Simulate the approximate Langevin dynamics from 0 to U using the estimated posterior score
function ŝS

m(t, x, y) to obtain X̂y
T,U .

3 return X̂y
T,U
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▶ A2. Sub-Gaussian tails.
The log-prior density log π0 ∈ C2(Rd), and there exist VSG > 0 and CSG > 0, such that∫

exp
( ∥x0∥2

2
V2

SG

)
π0(x0)dx0 ≤ CSG.

Log-Sobolev inequality of posterior
Suppose A2 holds, then for each T > t := 1

2 log(1 + 2V2
SG),

CLSI(qT(·|y)) ≤ 12σ2
T exp

(
2

σ2
T + 2µ2

TV2
SG

σ2
T − 2µ2

TV2
SG

log(κ2
yC2

SG)
)

.

The terminal posterior density qT(·|y) satisfies LSI for large T.
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Diffusion Posterior Sampling

dX̂y
t = (X̂y

t + 2 ŝS
m(T − t, X̂y

t , y)︸ ︷︷ ︸
posterior score estimation

)dt +
√

2dBt, X̂y
0 ∼ q̂U

T (·|y)︸ ︷︷ ︸
warm-start

, t ∈ (0, T − T0),

Algorithm 3: Diffusion-based posterior sampling

Input: Measurement y, diffusion terminal time T, early-stopping time T0.
Output: Posterior sample X̂y

T−T0
approximately drawn from q0(·|y).

1 Warm-start: Set the initial particle X̂y
0 = X̂y

T,U , where X̂y
T,U is a warm-start sample.

2 Reverse diffusion: Simulate the approximate time-reversal stochastic process over the time
interval [0, T − T0], employing the estimated score function ŝS

m(t, x, y), to generate X̂y
T−T0

.

3 return X̂y
T−T0
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m(T − t, X̂y

t , y)︸ ︷︷ ︸
posterior score estimation

)dt +
√

2dBt, X̂y
0 ∼ q̂U

T (·|y)︸ ︷︷ ︸
warm-start

, t ∈ (0, T − T0),

Algorithm 4: Diffusion-based posterior sampling

Input: Measurement y, diffusion terminal time T, early-stopping time T0.
Output: Posterior sample X̂y

T−T0
approximately drawn from q0(·|y).

1 Warm-start: Set the initial particle X̂y
0 = X̂y

T,U , where X̂y
T,U is a warm-start sample.

2 Reverse diffusion: Simulate the approximate time-reversal stochastic process over the time
interval [0, T − T0], employing the estimated score function ŝS
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Diffusion Posterior Sampling
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m(T − t, X̂y
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posterior score estimation

)dt +
√

2dBt, X̂y
0 ∼ q̂U

T (·|y)︸ ︷︷ ︸
warm-start

, t ∈ (0, T − T0),

▶ Posterior score estimation: T ∈ (0, t̄)
▶ Warm-start: T ∈ (t,+∞)

Does there exist a terminal time T such that both the posterior score estimation and the terminal posterior
sampling procedures are theoretically guaranteed to converge?

Suppose A1 and A2 hold. If 2αV2
SG ≤ 1, then there exists a terminal time T such that:

▶ the posterior denoising density pt(·|x, y) is log-concave for all t ∈ (0, T); and

▶ the posterior density qT(·|y) satisfies LSI.
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Error Decomposition

The posterior time-reversal process

dX̄y
t = (X̄y

t + 2∇x log qT−t(X̄
y
t |y))dt +

√
2dBt, X̄y

0 ∼ qT(·|y), t ∈ (0, T).

The approximate time-reversal process

dX̂y
t = (X̂y

t + 2 ŝS
m(T − t, X̂y

t , y)︸ ︷︷ ︸
posterior score estimation

)dt +
√

2dBt, X̂y
0 ∼ q̂U

T (·|y)︸ ︷︷ ︸
warm-start

, t ∈ (0, T − T0)︸ ︷︷ ︸
early-stopping

.

Sources of errors
▶ posterior score estimation error

▶ warm-start error

▶ early-stopping error

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 20/34



Additional Assumptions

▶ A3. For a fixed measurement y ∈ Rn, there exist constants r ≥ 1, B > 1 and L > 1 such that
for each x0 ∈ Rd,

∥∇ log π0(x0)∥2 ≤ B(1 + ∥x0∥r
2).

▶ A4. For a fixed measurement y ∈ Rn, there exists a constant H > 1, such that
∥∇ log q0(0|y)∥2 ≤ H.

▶ A5. Let ŝprior be an estimator of the prior score function ∇ log π0. There exists εprior ∈ (0, 1),
such that ∫

∥∇ log π0(x0)− ŝprior(x0)∥2
2π0(x0)dx0 ≤ ε2

prior.

▶ A6. For a fixed measurement y ∈ Rn, there exist constants G > 1, such that ŝprior −∇ℓy is
G-Lipschitz.
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Error Decomposition

Suppose A2 hold.

▶ Let T0 ∈ (0, 1
2 ) and R2 = (4µ2

T0
V2

SG + 16σ2
T0
) log(κyε−1

T0
). For εT0 ∈ (0, 1), we have

W2
2(q0(·|y),M(µ−1

T0
)♯q̂R

T−T0
(·|y)) ≤ C

{ σ2
T0

µ2
T0

+ εT0 log
( κy

εT0

)}
,

provided that ∥qT0 (·|y)− q̂T−T0 (·|y)∥2
TV = ε2

T0
. Here C is a constant only depending

on d, VSG, and CSG.

▶ For 0 < T0 < T, it holds that

∥qT0 (·|y)− q̂T−T0 (·|y)∥
2
TV

≤
∫ T

T0

E
[
∥∇ log qt(X

y
t |y)− ŝS

m(t, Xy
t , y)∥2

2
]
dt︸ ︷︷ ︸

posterior score estimation

+ 2∥qT(·|y)− q̂U
0 (·|y)∥2

TV︸ ︷︷ ︸
warm-start

.
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Error of Posterior Score Estimation

Suppose A1, A2, A3, A5, and A6 hold. Let 0 < T0 < T < 1
2 log(1 + α−1). For each time

t ∈ (T0, T),

E
[
∥∇ log qt(X

y
t |y)− ŝS

m(t, Xy
t , y)∥2

2
]

≤ C
µ2

T0

σ4
T0

κy

m︸ ︷︷ ︸
Monte Carlo

+C
µ2

T0

σ4
T0

exp
(
−

2(µ2
T − ασ2

T)

σ2
T

S
)

η2
y︸ ︷︷ ︸

convergence of Langevin dynamics

+ C
µ2

T0

σ4
T0

( σ2
Tη2

y

µ2
T − ασ2

T
+ S

) 1
2

exp
(

2
(

G +
µ2

T0

σ2
T0

)
S
)

κ
1
2
y ε

1
2
prior︸ ︷︷ ︸

prior score estimation error

,

where C is a constant only depending on d, B, VSG, and CSG. Here κy is the condition
number, and ηy is the initial discrepancy of Langevin dynamics.
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Error of Warm-Start

Suppose A1, A2, A3, A4, A5, and A6 hold. Assume 2αV2
SG ≤ 1. Let the terminal time

satisfy T ∈ ( 1
2 log(1 + 2V2

SG),
1
2 log(1 + α−1)). Then for ε ∈ (0, 1), it holds that

∥qT(·|y)− q̂U
T (·|y)∥

2
TV ≤ Cε,

provided that

U = Θ
(

exp
(

2
σ2

T + 2µ2
TV2

SG
σ2

T − 2µ2
TV2

SG
log(κ2

yC2
SG)

)
log

( ζ2
y

ε

))
,

εpost = Θ
(

exp
(
− 2

σ2
T + 2µ2

TV2
SG

σ2
T − 2µ2

TV2
SG

log(κ2
yC2

SG)
)(

ζ2
y + log

( ζ2
y

ε

))−1
(µ2

T − ασ2
T)

3 ε2

κ1/2
y

)
,

where C is a constant only depending on d, B, H, VSG, and CSG. The initial divergence ζ2
y

and the posterior score matching error at the terminal time T are defined, respectively, as:

ζ2
y := χ2(q̂0

T(·|y)∥qT(·|y)), ε2
post := E

[
∥∇ log qT(X

y
T |y)− ŝS

m(T, Xy
T , y)∥2

2
]
.
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Convergence of Posterior Sampling

Suppose A1, A2, A3, A4, A5, and A6 hold. Assume 2αV2
SG ≤ 1. Let the terminal time

satisfy T ∈ ( 1
2 log(1+ 2V2

SG),
1
2 log(1+ α−1)). For each time t ∈ (T0, T), Then for ε ∈ (0, 1),

the following inequality holds:

E
[
W2

2(q0(·|y),M(µ−1
T0

)♯q̂R
T−T0

(·|y))
]

≤ C
{ σ2

T0

µ2
T0

+
(µT0

σ2
T0

ε + ε
1
2

)
log

(
κy

(µT0

σ2
T0

ε + ε
1
2

)−1)}
,

where C is a constant only depending on d, κy, B, H, VSG, and CSG. Furthermore, by
setting T0 =

√
ε0, we have

E
[
W2

2(q0(·|y),M(µ−1
T0

)♯q̂R
T−T0

(·|y))
]
≤ C′ε

1
2 log ε−1.
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Numerical Experiemnts

Dataset: FFHQ64

Motion  deblurring Gaussian  deblurring Nonlinear  deblurring

face 1 face 2 face 3 face 4 face 5 face 6

Gaussian Deblur Motion Deblur Nonlinear Deblur

TV DPS Ours TV DPS Ours TV DPS Ours

PSNR 23.95 24.15 26.42 24.65 26.66 28.86 19.70 20.93 28.44
SSIM 0.81 0.81 0.87 0.80 0.88 0.92 0.53 0.68 0.91
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Gaussian Deblurring

Naive TV DPS PDPS Original

PSNR=24.12  SSIM=0.85 PSNR=26.75  SSIM=0.90 PSNR=28.31  SSIM=0.94

PSNR=23.72  SSIM=0.83 PSNR=23.68  SSIM=0.84 PSNR=26.34  SSIM=0.91

TV DPS PDPS TV DPS PDPS
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Motion Deblurring
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Nonlinear Deblurring

PSNR=22.08  SSIM=0.71 PSNR=27.56  SSIM=0.91 PSNR=31.78  SSIM=0.96

PSNR=18.70  SSIM=0.60 PSNR=23.78  SSIM=0.89 PSNR=29.04  SSIM=0.95
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Cross-Dataset Generalization Assessment

▶ Prior score is learning using
FFHQ64.

▶ Groundtruth image is from
AFHQ64.

PSNR=20.54  SSIM=0.49 PSNR=22.52  SSIM=0.64 PSNR=30.08  SSIM=0.90

PSNR=21.55  SSIM=0.55 PSNR=17.84  SSIM=0.50 PSNR=27.94  SSIM=0.86

Naive TV DPS PDPS Original

PSNR=25.25  SSIM=0.79 PSNR=27.45  SSIM=0.85

PSNR=24.02  SSIM=0.75 PSNR=24.11  SSIM=0.77 PSNR=26.15  SSIM=0.84
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Ablation Study of Terminal Time
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▶ For too small T, the terminal posterior density qT(·|y) does not satisfies LSI.

▶ For too large T, the posterior denoising density pt(·|x, y) is non-log-concave for t close to T.
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Concluding Remarks

Summary
▶ A diffusion-based posterior sampling method without heuristic approximations.

▶ Non-asymptotic error analysis for posterior sampling.

▶ Experiemntal performance in image restoration.

Further work
▶ Derivative-free Bayesian inference.

▶ Blind inverse problems.

▶ Inverse problem in inifinite-dimensional problems.
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