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® Introduction to Inverse Problems
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Applications of Inverse Problems

(a) Medical Imaging (b) Weather Prediction (c) Image Processing
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Mathematical Formulation of Bayesian Inverse Problems

Consider the measurement model:
Y =F(X)+n.

> F:R? - R"is a known forward map.
» X € R? is an unknown signal with prior density 7.
» 7 is typically intractable but one has X, ..., Xy ~d 7.

» n € R" is a random noise independent of X and with known density.
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Mathematical Formulation of Bayesian Inverse Problems

Consider the measurement model:
Y =F(X)+n.

> F:R? - R"is a known forward map.
» X € R? is an unknown signal with prior density 7.
> 7 is typically intractable but one has X, ..., Xy ~4 7.

» n € R” is a random noise independent of X and with known density.

Given noisy measurement Y = y, the goal of Bayesian inverse problem is to estimate the
posterior density

q(xly) o exp(=ty(x))7(x),
where (y(-) is the negative log-likelihood.
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Mainstream Methods for Bayesian Inverse Problems

Optimization-based approach
Maximum-a-posteriori (MAP): Find a signal that minimizes the posterior density:

arg maxlog g(x|y) = arg max —fy(x) + log r(x)
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Mainstream Methods for Bayesian Inverse Problems

Optimization-based approach
Maximum-a-posteriori (MAP): Find a signal that minimizes the posterior density:

arg maxlog g(x|y) = arg max —fy(x) + log r(x)

» Connection with Tikhonov regularization

> Point estimation, cannot quantify the uncertainty
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Mainstream Methods for Bayesian Inverse Problems

Optimization-based approach
Maximum-a-posteriori (MAP): Find a signal that minimizes the posterior density:

arg maxlog g(x|y) = arg max —fy(x) + log r(x)
X X
» Connection with Tikhonov regularization

> Point estimation, cannot quantify the uncertainty

Sampling-based approach
Sampling from the posterior density 4(-|y):

XY, X~ g (y).
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Mainstream Methods for Bayesian Inverse Problems

Optimization-based approach
Maximum-a-posteriori (MAP): Find a signal that minimizes the posterior density:

arg maxlog g(x|y) = arg max —fy(x) + log r(x)
X X
» Connection with Tikhonov regularization

> Point estimation, cannot quantify the uncertainty

Sampling-based approach
Sampling from the posterior density 4(-|y):

XY, X~ g (y).

» Uncertainty quantification
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Key Questions in Posterior Sampling

Q1. How to estimate the prior distribution using samples drawn from it?
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Key Questions in Posterior Sampling

Q1. How to estimate the prior distribution using samples drawn from it?

» Manual selection of the prior: cannot capture the complex structure of the prior distribution.
» Generative prior (Vishal Purohit et al. 2025)

» Prior score matching (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

> ...
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Key Questions in Posterior Sampling

Q1. How to estimate the prior distribution using samples drawn from it?

» Manual selection of the prior: cannot capture the complex structure of the prior distribution.
» Generative prior (Vishal Purohit et al. 2025)

» Prior score matching (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

> ...

Q2. How to sample from the multi-modal posterior distribution?
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Key Questions in Posterior Sampling

Q1. How to estimate the prior distribution using samples drawn from it?

Manual selection of the prior: cannot capture the complex structure of the prior distribution.
Generative prior (Vishal Purohit et al. 2025)
Prior score matching (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

Q2. How to sample from the multi-modal posterior distribution?
» Langevin dynamics (Vishal Purohit et al. 2025, Zhao Ding et al. 2025)
» Diffusion models (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)
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Key Questions in Posterior Sampling

Q1. How to estimate the prior distribution using samples drawn from it?

Manual selection of the prior: cannot capture the complex structure of the prior distribution.
Generative prior (Vishal Purohit et al. 2025)
Prior score matching (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

Q2. How to sample from the multi-modal posterior distribution?
» Langevin dynamics (Vishal Purohit et al. 2025, Zhao Ding et al. 2025)
» Diffusion models (Hyungjin Chung et al. 2023, Jiaming Song et al. 2023)

Prior Score + Diffusion Models represent a highly promising solution!
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Diffusion Posterior Sampling

Forward process
dX; = —X;dt +V2dB;, Xg~ 7, te (0,T).

Time-reversal process

dX; = (X¢ + 2V log rr—¢(Xy))dt + \deBt, Xg ~ 7, t € (0, T). X ~ T7_4
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Diffusion Posterior Sampling

Forward process
dX; = —X¢dt +V2dB;, Xg~m, te(0,T).

Time-reversal process

dX; = (X¢ + 2V log rr—¢(Xy))dt + \deBt, Xg ~ 7, t € (0, T). X ~ Tr_4
Posterior time-reversal process
dX} = (X} +2Vxloggr—+(X]|y))dt + vV2dB;, XJ ~ qr(-ly) Xi ~ qr—¢(-ly)
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Diffusion Posterior Sampling

Forward process
dX; = —X;dt +V2dB;, Xg~ 7, te (0,T).

Time-reversal process

dX; = ()_(t +2Vylog ﬂT_t()_(t))dt—F \deBt, Xg~ 7, t € (0, T). X; ~ TTT—¢

Posterior time-reversal process
dX} = (X} +2Vxloggr—+(X]|y))dt + vV2dB;, XJ ~ qr(-ly) Xi ~ qr—¢(-ly)

How to estimate the posterior score V log q¢(-|y) for t € (0,T)?
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Existing Approximation Methods for Posterior Score Estimation

Vlogq:(xtly) = Vlog p(ylx;) + V log 7t (xt)
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Existing Approximation Methods for Posterior Score Estimation

Vlogq:(xtly) = Vlog p(ylx;) + V log 7t (xt)

pyx) = [ plylxo,xe)p(xolxt)dxo

= [ exp(=ty(x0)) p(xalxe)dxo

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025 8/34



Existing Approximation Methods for Posterior Score Estimation

Vlogq:(xtly) = Vlog p(ylx;) + V log 7t (xt)

pyx) = [ plylxo,xe)p(xolxt)dxo

= [ exp(~ty (x0))p(xolx:)xg

The time-dependent likelihood p(y|x;) is intractable.
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Existing Approximation Methods for Posterior Score Estimation

Vloggi(xtly) = Viog p(ylx:) + V log 7t (x¢)

pyx) = [ plylxo,xe)p(xolxt)dxo

= [ exp(~ty (x0))p(xolx:)xg

The time-dependent likelihood p(y|x;) is intractable.

Approximation Methods

DPS (Hyungjin Chung et al. 2023)  Dirac approximation p(Xolxt) = gx,x, (X0)
LGD (Jiaming Song et al. 2023) Gaussian approximation  p(xg|x¢) ~ N(E[Xo|x¢], 7714)
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Outline

@ Diffusion-based Posterior Sampling
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Posterior Score Estimation via Monte Carlo

dx¥ = (X +2Vyloggr (X |y))dt + v2dBy, X} ~ gr(-|y)
~—

posterior score
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Posterior Score Estimation via Monte Carlo

dx¥ = (X +2Vyloggr (X |y))dt + v2dBy, X} ~ gr(-|y)
~—

posterior score

Conditional Tweedie’s formula
For each t € (0, T), the score function of the posterior density satisfies

1
Viloggi(xly) = ——x+ %D(t,x,y), (x,y) € RY x R,
t t

where the posterior denoisor D(t,x,y) is defined as

D(t,x,y) :=E[Xo| Xt =x,Y =y].
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Posterior Score Estimation via Monte Carlo

dx¥ = (X +2Vyloggr (X |y))dt + v2dBy, X} ~ gr(-|y)
~—

posterior score

Conditional Tweedie’s formula
For each t € (0, T), the score function of the posterior density satisfies

1
Viloggi(xly) = ——x+ %D(t,x,y), (x,y) € RY x R,
t t

where the posterior denoisor D(t,x,y) is defined as

D(t,x,y) :=E[Xo| Xt =x,Y =y].

_ 2
Expectation with respect to pe(xolx,y) o« 7(xp) exp ( = % = ﬂy(xo))
t
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Sampling from the posterior denoising density

» Langevin dynamics
axzY = (v1og T(OGY) + g (x— uXyY") — VZY(XS:Z’t))ds ++2dB;, s€(0,5)
t
» Langevin dynamics with estimated prior score

Xy = (s(X5Y") + gt (x = uXo2") = VA (GY) ) ds + V2dBs, s € (0,9).
t
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Sampling from the posterior denoising density

» Langevin dynamics

axzY = (v1og T(OGY) + Z (x— uXyY") — VZY(XS:Z’t))ds ++2dB;, s€(0,5)
t

» Langevin dynamics with estimated prior score
d)A(S’Z’t _ <§n(§(S'Z't) He (x - Xx,y, ) — V¢ ( x,y, ))ds i \ﬁst,
) , o2
Monte Carlo approximation
» Estimation of the posterior score

-5 ]/ltlm b Xyt Xyt
8o, (txy) & — + 2, ngl Vxlogg:(xy), ng/l,...,xggrm

i=1
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Algorithm 1: Posterior score estimation via Monte Carlo

Input: Measurement y, prior score estimator Sy, noise level ¢, evaluation point x, simulation
horizon §, initial density ﬁ?( ly) for Langevin dynamics.
Output: Posterior score estimator 85, (t,x, y).

1fori=1,...,mdo
2 In1t1ahze particle by Xg%”l ~ 7 (-[xy).
3 Evolve particle to time S by simulating Langevin dynamics to obtain Xo’g’ ;

4 end

5 Compute the posterior denoiser estimate D3, (t,x,y) using {Xo’g’ it via Monte Carlo

method.
Compute the posterior score estimate 85, (t,x,y) using D3, (t,x,y).
return 85, (t,x,y)

N o
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» Al. Semi-log-concavity of the posterior distribution.
For a fixed y € R", there exist a constant & > 0, such that go(-|y) € C2(R?) satisfies
—~V2logqo(xoly) = —al, for each xg € R%.

Log-concavity of posterior denoising density
Suppose Al holds, then for each ¢ > 0,
M 2 4 Rrd
(U—; — oc)ld ==V log pt(xo|x,y), (x0,x) € R* x R".
t
Further, the posterior denoising density is log-concave provided that t < f := %log(l +
=i

a”th).
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» Al. Semi-log-concavity of the posterior distribution.
For a fixed y € R", there exist a constant & > 0, such that go(-|y) € C2(R?) satisfies
—~V2logqo(xoly) = —al, for each xg € R%.

Log-concavity of posterior denoising density
Suppose Al holds, then for each ¢ > 0,
M 2 4 Rrd
(U—; — zx)Id = =V logpi(xolxy), (x0,x) € R® x R”.
t
Further, the posterior denoising density is log-concave provided that t < f := %log(l +
=il

a”th).

Monte Carlo-based approach for posterior score estimation works for small > 0.
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Warm-Start Strategy

Goal of warm-start: Sample from the terminal posterior density g7(-|y).

dx¥ = (X +2Vyloggr (X y))dt + vV2dB:, X ~ gr(-ly)
—_—
warm-start

» For sufficiently large T, we can use Gaussian approximation g7 (-|y) ~ N(0,1;).

» However, Monte Carlo-based approach for posterior score estimation requires small T.
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Warm-Start Strategy

Goal of warm-start: Sample from the terminal posterior density g7(-|y).

d)_(i' = ()_(f +2Vilog qT,t()_(ﬂy))dt +V/2dB;, X(}; ~qr(-ly)

warm-start

» For sufficiently large T, we can use Gaussian approximation g7 (-|y) ~ N(0,1;).

» However, Monte Carlo-based approach for posterior score estimation requires small T.

Warm-start strategy
Langevin dynamics with estimated posterior score:

dxy, =s(T, )?;u,y)du ++V2dB,, u e (0,U).

Here 8, (T, -, y) is obtained by Monte Carlo-based posterior score estimation.
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Algorithm 2: Warm-start for diffusion posterior sampling

Input: Measurement y, simulation horizon U, terminal density §%-(-|y) for Langevin
dynamics.
Output: Sample )A(}%,u approximately distributed according to qr(-|y).
1 Initialize particle by )A(}}/O ~ g% (ly).
2 Simulate the approximate Langevin dynamics from 0 to U using the estimated posterior score
function 85, (t,x,y) to obtain §(¥,u.
3 return )A(}%u

Chenguang Duan (RWTH Aachen) Provable Diffusion Posterior Sampling for Bayesian Inversion December 10, 2025

15/34



» A2. Sub-Gaussian tails.
The log-prior density log 71y € C2(R?), and there exist Vg > 0 and Csg > 0, such that

2
Xo
/eXP ( ||V2H2)7T0(Xo)dxo < Csg-

SG

Log-Sobolev inequality of posterior
Suppose A2 holds, then for each T > t := 1 log(1+ 2V2.),

+2
Cusi(gr(-1y)) < 1207 exp (2%%1 8(5C3))-
SG
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» A2. Sub-Gaussian tails.
The log-prior density log 71y € C2(R?), and there exist Vg > 0 and Csg > 0, such that

Ixol13
/eXP( V2. )ﬂo(xo)dxo < Csg-

Log-Sobolev inequality of posterior
Suppose A2 holds, then for each T > t := 1 log(1+ 2V2.),

oF + 2u5 Vs

Crsi(gr(‘[y)) < 1207 exp (2 72— 22 VE

log(Kf,Cgc)) .

The terminal posterior density qr(-|y) satisfies LSI for large T.
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Diffusion Posterior Sampling

dX) = (X} +2 s,(T—£X],y) )dt+V2dB;, XJ~q{(-ly), t€(0,T—Ty),
N\ —— D e
posterior score estimation warm-start
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Diffusion Posterior Sampling

ds\q: (5\(2,"’_2 §31<T*t,§(¥,y) )dt-l—\/EdBt, )A(gwq\%!(‘y)’ te (0,T—Tp),
~— e —
posterior score estimation warm-start

Algorithm 4: Diffusion-based posterior sampling

Input: Measurement y, diffusion terminal time T, early-stopping time Tp.
Output: Posterior sample X} 1, approximately drawn from qo(-|y).
1 Warm-start: Set the initial particle )A(g = )A(}}/u, where )A()T’u is a warm-start sample.
2 Reverse diffusion: Simulate the approximate time-reversal stochastic process over the time
interval [0, T — Tp], employing the estimated score function §,§1 (t,x,y), to generate )A(}},TU.

XY
3 return X7 _ T
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Diffusion Posterior Sampling

-’

dX! = (X +2 §,(T—tX],y) )dt+V2dB;, XJ~G(ly), te(0,T—Ty),

posterior score estimation warm-start

» Posterior score estimation: T € (0, )
» Warm-start: T € (¢, +o0)
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Diffusion Posterior Sampling

-’

dX! = (X +2 §,(T—tX],y) )dt+V2dB;, XJ~G(ly), te(0,T—Ty),

posterior score estimation warm-start

» Posterior score estimation: T € (0, )
» Warm-start: T € (¢, +o0)

Does there exist a terminal time T such that both the posterior score estimation and the terminal posterior
sampling procedures are theoretically guaranteed to converge?
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Diffusion Posterior Sampling

dX! = (X +2 §,(T—tX],y) )dt+V2dB;, XJ~G(ly), te(0,T—Ty),
———— ————
posterior score estimation warm-start

» Posterior score estimation: T € (0, )
» Warm-start: T € (t, +00)

Does there exist a terminal time T such that both the posterior score estimation and the terminal posterior
sampling procedures are theoretically guaranteed to converge?

Suppose Al and A2 hold. If 2ocVSZG < 1, then there exists a terminal time T such that:
» the posterior denoising density p¢(-|x, y) is log-concave for all ¢ € (0, T); and
» the posterior density g7(-|y) satisfies LSI.
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Outline

© Convergence Guarantee
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Error Decomposition

The posterior time-reversal process
dX} = (X} +2Vxloggr—(X/ly))dt + V2dBy, Xg ~qr(ly), t € (0,T).
The approximate time-reversal process

d)A(y = ()A(y"_z grSn(T* t,f(?’,y) )dt + \/idBt, )A(g ~ Z]\%!(‘y), te (0,T—Tp).

posterior score estimation warm-start early-stopping

Sources of errors
» posterior score estimation error
» warm-start error

» early-stopping error
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Additional Assumptions

> A3. For a fixed measurement y € IR”, there exist constants * > 1, B > 1 and L > 1 such that
for each x € R,
1V log 0 (x0)[2 < B(1 + [Ixoll2)-
» A4. For a fixed measurement y € IR”, there exists a constant H > 1, such that
[V 1og q0(0[y)l2 < H.

> AS5. Let Sprior be an estimator of the prior score function V log 7rp. There exists eprior € (0,1),
such that

/ IV 1og 710(x0) — Sprior (X0) 5770 (x0)dX0 < €3i0r-

> A6. For a fixed measurement y € R", there exist constants G > 1, such that Sprior — Vy is
G-Lipschitz.
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Error Decomposition

Suppose A2 hold.
> Let Ty € (0, 3) and R? = (4} V&; + 1607, ) log(iye7! ). For e, € (0,1), we have

W3 (g0 (ly), M (g, )77 - TO<|y>><c{y20+sTolog( 21

provided that ||qr, (:ly) — 7r—1, (:[y) |13y = SZTD. Here C is a constant only depending
on d, VSG/ and CSG~

» For 0 < Ty < T, it holds that
lar, C-ly) = Gr—n, Cly) I3y

T
= /TO E[[|Vlogq: (X} ly) — 85, (t, X, y) 3] dt +2llgr(-ly) — 75 (-ly) Iy -

warm-start

posterior score estimation
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Error of Posterior Score Estimation

Suppose A1, A2, A3, A5, and A6 hold. Let 0 < Ty < T < %log(l + tfl). For each time
te (To, T),

E[[|Vlogq:(X!y) — 85.(t. X}, y) 3]

2 2 2 2
HT, Ky M, 2(u7 — aog) 2
< C—2= +C—rexp ( - 75)17
= 2 y
‘7/%0 m/ ‘7/%0 or
Monte Carlo convergence of Langevin dynamics
2 2.2 1 2
M, oty 2 M, 11
+c7°(7 +s) ex (2(G+ J)s)mz .
A AR VA

prior score estimation error

where C is a constant only depending on d, B, Vsg, and Csg. Here xy is the condition
number, and 7y is the initial discrepancy of Langevin dynamics.
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Error of Warm-Start

Suppose Al, A2, A3, A4, A5, and A6 hold. Assume 2“V82G < 1. Let the terminal time
satisfy T € (3 log(1+2VZ2), 31log(1+a~1)). Then for e € (0,1), it holds that

lar(-ly) = 7% Cly)llfy < Ce,

provided that

2

u= @(exp ( m 10g(”§C§G)> log (%))'

2

Epost = ®(exp ( - 2% log(K§C§G)) <Cy +log (€Y)) (Wt — [W%)BKEIT)'

where C is a constant only depending on d, B, H, Vg, and Csg. The initial divergence éyz,
and the posterior score matching error at the terminal time T are defined, respectively, as:

G =@ CWNarCly),  ehost = E[IVlogar (X7ly) — 85, (T, X%, y)[3].
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Convergence of Posterior Sampling

Suppose Al, A2, A3, A4, A5, and A6 hold. Assume thVSZG < 1. Let the terminal time
satisfy T € (% log(1+2VZ,), 1log(1+a~1)). For each time t € (Tp, T), Then for ¢ € (0,1),
the following inequality holds:

IE[\V"%(%(-Iy) M )aT -1, (1y)]

-1
< C{ T” + <@£+82) log (Ky(hs—i—sZ) )},
VTO UTO g
where C is a constant only depending on d, xy, B, H, Vsg, and Csg. Furthermore, by
setting Tp = ,/gg, we have

E[W(q0(-1y), M(uz)7R_g, (1y))] < C'e? loge™
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Outline

©® Numerical Experiments
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Numerical Experiemnts

Dataset: FFHQ64

Motion deblurring Gaussian deblurring Nonlinear deblurring

-/

Gaussian Deblur Motion Deblur Nonlinear Deblur
TV DPS Ours TV DPS  Ours TV DPS Ours

PSNR 2395 2415 2642 2465 2666 28.86 1970 2093 28.44
SSIM 0.81 0.81 0.87  0.80 0.88 0.92 053  0.68 0.91
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Gaussian Deblurring

PDPS Original

v DPS
aaa |

PSNR=24.12 SSIM=0.85 PSNR=26.75 SSIM=0.90 PSNR=28.31 SSIM=0.94

Naive
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DPS PDPS
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mean err.
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Motion Deblurring

PDPS Original

TV DPS
Q Q. - (B
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mean err.
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std. dev.
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Nonlinear Deblurring

TV PDPS Original

TV DPS PDPS

mean err.
std. dev.

mean err.
std. dev.
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Cross-Dataset Generalization Assessment

» Prior score is learning using

FFHQ64.

Motion deblurring

» Groundtruth image is from

AFHQ64.

Chenguang Duan (RWTH Aachen)

Nonlinear deblurring
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Ablation Study of Terminal Time

Face 3 Face 4
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» For too small T, the terminal posterior density g7(-|y) does not satisfies LSL

» For too large T, the posterior denoising density p;(-|x,y) is non-log-concave for ¢ close to T.
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Concluding Remarks

Summary
» A diffusion-based posterior sampling method without heuristic approximations.
» Non-asymptotic error analysis for posterior sampling.

» Experiemntal performance in image restoration.
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Concluding Remarks

Summary
» A diffusion-based posterior sampling method without heuristic approximations.
» Non-asymptotic error analysis for posterior sampling.
» Experiemntal performance in image restoration.
Further work
» Derivative-free Bayesian inference.
» Blind inverse problems.

» Inverse problem in inifinite-dimensional problems.
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