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Applications of Data Assimilation

Numerical weather prediction (NWP) uses physical models of the atmosphere and oceans to predict the
weather based on the measurement data.

Physical models Measurement data

Governing equations of atmosphere:
» conservation of momentum
conservation of mass
conservation of energy
the equation of state for ideal gases

conservation equation for water mass
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Problem Formulation

Dynamics model: A discrete time unobserved stochastic process (X ),>1 satisfying

Xi+1 = Fi(Xk, Vi) Pk Kie+1 Xie) = p (K1 X)
» Fisaknown time-dependent model.

» Visarandom variable with known distribution.
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Dynamics model: A discrete time unobserved stochastic process (X )>1 satisfying

X1 = Fi(Xk, Vi) Pk X1 1Xi) = p (X1 1 X))
» Fisaknown time-dependent model.
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Measurement model: A discrete time observed stochastic process (Y )i satisfying
Yie = Gi(Xi, W) 8k (Yl Xi) = p(Y[Xi)
» G, is a known time-dependent measurement operator.

» W, is arandom measurement noise with known distribution.

state transition density

1
P1 Pk—1 Pk Pk+1
Latent States | X3 —m8 -+ —m— Xy — Xpp1 ———
21 l measurement likelihood gkl Skt l
Observations Y; e Y Yii1

C. Duan (WHU) Score-based Sequential Langevin Sampling July 18,2025 4/26



Problem Formulation

Dynamics model: A discrete time unobserved stochastic process (X ),>1 satisfying

Xi+1 = Fi(Xk, Vi) Pk X1 1Xe) = p (K11 X))
» Fisaknown time-dependent model.

» Visarandom variable with known distribution.
Measurement model: A discrete time observed stochastic process (Y )i satisfying
Yie = Gi(Xi, W) 8k (Yl Xi) = p(Y[Xi)
» Gy is a known time-dependent measurement operator.

» W, is arandom measurement noise with known distribution.

Data Assimilation

The goal of the data assimilation is to estimate the posterior distribution of the latent state X ; given all
available measurements Y|, 1), thatis, 751 (X 1|Y[k4q)) foreachk > 1.
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Recursive Bayesian Filtering Framework

State-Space Model

Dynamics model X1 = Fr(Xk, Vi) +—  State transition density o (Xiex1Xk)
Measurement model Y1 = G 1 (Xgyp1, Wi)  <—  Measurement likelihood iy 1 (Yii1|Xkr1)

M1 (X1 |Y[k+1])
o p (Vi1 Xie1, Yiig) i1 (X1 [ Yyg) > Bayes’ rule

= P(Yk+1\xk+1rY[k])/P(Xk+1|Xk/Y[k])7Tk(Xk|Y[k])ka » Chapman-Kolmogorov identity

= k1 (Yes 1 Xey1) /Pk(Xk+1|Xk)7fk(Xk\Y[k])ka > Yir1 AL Yy Xoer1, and X g AL Y [X
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Recursive Bayesian Filtering Framework

State-Space Model

Dynamics model X1 = Fe(Xk, Vi) +—  State transition density o (Xix1Xe)
Measurement model Yy 1 = G 1(Xgy1, Wi)  <—  Measurement likelihood i1 1 (Yir1|Xkr1)

current posterior state transition previous posterior

—N—
M1 (Kie1 1Y [rr1) & 81 Y1 [ X 1) /Pk(xk+1lxk) T (X[ Y[) dXk
—_———

measurement likelihood

current prior
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—N—
M1 (Kie1 1Y [rr1) & 81 Y1 [ X 1) /Pk(xk+1lxk) T (X[ Y[) dXk
—_———

measurement likelihood

current prior

prediction update
7 (X[ Y[x) T > T+ 1 (X1 Yiig) T > k1 (X1 Yjegn))
Pk (Xi41/Xk) Sk+1(Yet1Xet1)
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Classical Methods for Data Assimilation

M1 (X1 1Y k1)) & 1 (Y1 [ Xie1) /Pk(xk+1|xk) T (X[ Ypgg) dXe
\—/_/ - N—

~—
current posterior previous posterior
prediction update
7o (Xi| Y[ ) T > A1 (Xier 1Y i) T > s 1 (Xer1 [ Y[q))
Pk (Xie1 X)) 81 (Yier1Xpe+1)

> How to estimate the prediction distribution qx 1 (Xi11[Y[))?

> How to sample from the posterior distribution 7y 1 (X 11|Y[x41]) given the prediction and likelihood?
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M1 (X1 [ Y1) & 81 (Yier1 [ Xeq1) /Pk(xk+1|xk) T (X[ Ypgg) dXe
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current posterior previous posterior
prediction update
7o (Xi| Y[ ) T > A1 (Xier 1Y i) T > s 1 (Xer1 [ Y[q))
Pk (Xie1 X)) 81 (Yier1Xpe+1)

> How to estimate the prediction distribution qx 1 (Xi11[Y[))?
> How to sample from the posterior distribution 7y 1 (X 11|Y[x41]) given the prediction and likelihood?

o (X [Y i) Ok Xies11Xk) g1 (Vi1 Xie1) Limitations
Kalman Filter  Gaussian approximation Gaussian Gaussian linear + Gaussian
Particle Filter  particle approximation - - particle degeneracy
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@® Score-based Sequential Langevin Sampling
Prediction and Score Matching
Update via Langevin Sampling
Summary of Procedure

C. Duan (WHU) Score-based Sequential Langevin Sampling

July 18,2025

7/26



Prediction and Score Matching

Prediction density T 1 (X1 [ Ypgy) = / Ok Xy 11 Xi) 70 (X [ Y g ) d Xk
"""""""" prediction =~ " T o update
7o (Xi | Y[ ) T > A1 (Xier 1Y i) T > Tkt 1 (X1 [Yjern)

k1 (Yes11%k41)

How to estimate the score function V log gy 1(+|Y|)) of the prediction distribution?
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Te+1 (X1 Yigy) = /Pk(xk+1\Xk)ﬂk(kak])dxk

» Given: 3\(}1{, e ,)/ZZ ~ddd. ﬁk(Xk|Y[1\]) ~ nk(Xk\Y[k]).
> Prediction with dynamics model: X};H = }—k(ii,V};),for eachl1 <i<n.

Xip1 ~ G Xes [Yp) = /Pk(xk+1\Xk)ﬁk(xle[k])ka ~ k1 (Xep1 [ Yp)-
» Denoising score matching:

i1 (V) = argmin Liya(s) = Ex g, (v Beonony) [108(Xe1 + e, Yy) + 3]
s:RxRI—R4

which is the score function of the Gaussian smoothed prediction distribution

Sk1(+[Ypgy) := Vlog (/N(~;Xk+1,021d)l7k+1(xk+1\Y[k})kaH) ~ Vlog i1 (-|Y)
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Update via Langevin Sampling

Bayes’ rule M1 (Kie1 Y[k 1)) & &1 Vi1 X 1) i1 K1 [Y i)
predicton [~ -7 77 update =~ T ST T !

7 (X Y (i) T : Tie+1 X1 Yiiy) T > 71 (X1 [ Y[egay)

Ok (X111 Xx)

How to sample from the posterior distribution 7y, 1 (Y1) given the prediction and likelihood?
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M1 (X1 Yy 1)) € 81 (Vi1 X 1) g1 K1 [Y )
» Langevin dynamics
dZ; = Vlog 7is1(Zt|Y sy )dt + V2dBy,
= {Vlog gir1(Yes11Zt) + V10g g1 (Ze[Yyg) bt + V2dBt,  Zo ~ Gy (-[Ypg)-

» Prediction score estimation
» Euler-Maruyama discretization

» Score-based Langevin Monte Carlo

Zgr1yn = Ziy + h{ V108 g1 (Xir1|Zin) + k1 (Zin, Yj)) } + V2h&x,  Zo ~ Gt (Y [i)-
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Annealing Strategy

Interpolations between the prediction and posterior distribution:

71 1Y pety) & 7kr (Y ) Prgiea ClYg) =P, 0<m <M

» Annealingschedule:0=8p < B <--- <Py =1

LMC
LMC | i+ ([Ypi) > 1 (+[Yer))

LMC

= LMC
T Yper) 2 - = 87 Y ) —— e C1Y )

B1 "' Bm-1

ALMC |1 ([ Y[)

WV

inverse temperatures

Vv

C. Duan (WHU) Score-based Sequential Langevin Sampling July 18,2025 12/26



Annealing Strategy

Interpolations between the prediction and posterior distribution:

71 1Y pety) & 7kr (Y ) Prgiea ClYg) =P, 0<m <M

» Annealingschedule:0=8p < B <--- <Py =1

LMC
LMC | i+ ([Ypi) > 1 (+[Yer))

LMC

ALMC |1 ([ Y[)

WV

, LMC
T Yper) 2 - = 87 Y ) —— e C1Y )

B1 "' Bm-1

inverse temperatures

Vv

Vlog i1 (1Y) = B V10g 7ty 1 (+[Yperq)) + (1= Bm) V1og gi1 (+[Ypq)
= PuV10g g1 (Yis1l-) + V1og g1 (+[Yi)

C. Duan (WHU) Score-based Sequential Langevin Sampling July 18,2025 12/26



Summary of Procedure

___________________________________________________________________

score
matching I
h 4

Bayes’ rule

Sit1(+ Yiy) & V1og iy (+[Yyy) Vlog gki1(Yetal)

. - \
| Prediction : ! Update :
1 : | — — ,
: Ry X ~ 7Y et R R~ Aea(Mey) |
1 ! | N . :
| dynamics posterior scoré estimator Langevin !
! model | 1 sampling X
: b4 | \
! Xpiqr o XE g ~ G (Yp) ! by 1( Yigqa)) & V1og ia (Y [kp)) E
1

1

1

prediction score estimator gradient of the log-likelihood
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Algorithm 1: Score-based Sequential Langevin Sampling for data assimilation.

Input: The observations (Yk)keN, the dynamics model (Fi)rens the likelihood {gx (Yi|*) Hren-
Output: A particle approximation XkH, . Xk+1 to the distribution 7t 1 ([ Y[y 1))-

# Initial posterior sampling.

Sample from the gauss of the initial prior distribution X}, ..., X} ~1d- 7.

Estimate the score from {X} }_, by score matchings;.

Sample from the posterior 771 (-|y1) by Langevin sampling: )A(%, . ,)A('l1 — ALMC(X%, X s, 81(Ya ).
# Recursive posterior sampling.

fork=1,2,...do

# Prediction step.

Run the dynamics model: X};H — ]-'k()A(}'{, Vf() with Vi ~pyforl <i<n.

Estimate the prediction score from {X; ; }/_; by score matchingsy1 (-, Y[).

# Update step.
Sample from the posterior 7, 1 (+[Y[41)) by Langevin sampling:

end

return )A(ll e ,)A(”l .
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® Convergence Analysis
Assumptions
Convergence Analysis for Posterior Sampling
Convergence Analysis for Assimilation
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Assumptions

AL. Lipschitz score. For each k € IN, the posterior score is A-Lipschitz on R?, that is, for each x1, x, € RY,
[V 1og i1 (%1 [Y[iy1) — Vxlog i1 (%2 Yy 1) [l2 < Allxa — %22

A2. Log-Sobolev inequality. For each k € IN, the posterior distribution satisfies a log-Sobolev inequality
with constant Cy gy, that is, for each function f € C(R),

Ent(f?) < 2CigE[[VfI3],

where the entropy is defined as Ent(g) = E[glog ¢] — E[g] log E[g], and the expectation is taken with
respect to the posterior distribution 7ty 1 (Y|4 1))-
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» A3. Boundedness and condition number. Foreach k € IN,

> there exists B > 1 such that o (x|X¢), || Vox (x| Xk)|o < B forx € RY,
> there exists D > 1such that gy (x|Y) > D7 lforx € Oy := supp (qx11 (Y ))s

> 41(x), [Vg1(%) |l < Band g1(x) > D~ forx € Q; := supp(q1),and
» there exists k > 0 such that
sup, g1(Y1/x) sup, k1 (Yry1/%)
J&1(Y11)q1()dx” [ g1 (Yiep1 )1 (x| Y g )dx —

> A4. Error of score matching. There exists a score matching tolerance A € (0,1) such that

Ex, [ Vxlog (X)) — 81 (X,) 3] < 4%,
Ex, ., [[IVx10g Fir1 (Xer1[Y ) = Skr Xern, Y 5] < A2,

foreach k € IN. Here the expectation [Ex, [] is taken with respect to X; ~ 41, and the expectation Ex_, [']
is taken with respect to X 1 ~ i1 (*[Y[g)-
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Convergence Analysis for Posterior Sampling

Under Assumptions Al to A4. Then for each k € IN and each terminal time T = Kh,

T

= 2 2 2

(1701 (1Y k1)) = 1 (1Y egap) low S exp ( - 5CLSI)’7X + dCigiA’h + VB3D3(T + Crspy) A
posterior error N discretization error score estimation error

convergence of LD

+ B*DAT ||y (- Ypy) — (- [Ypg) 13y

prior error
where the step size h and the initial distribution 71,9(- |Y[y) satisfies

1
h< ACLg A2’ X2<”19+1('|Y[k+1])H7Tk+1("Y[k+1])) < ’7;2(-
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Convergence Analysis for Posterior Sampling

Under Assumptions Al to A4. Then for each k € IN and each terminal time T = Kh,

T

= 2 2 2

17041 (1Y k1)) = o1 (1Y o)) Iy S exp ( - 5CLSI>’7X + dCigiA’h + VB3D3(T + Crspy) A
posterior error N discretization error score estimation error

convergence of LD

+ B*DAT ||y (- Ypy) — (- [Ypg) 13y

prior error
where the step size h and the initial distribution 71,9(- |Y[y) satisfies

1
h< mr X2<7T1?+1('|Y[k+1])H7Tk+1("Y[k+1])) < ’7;2(-

» Early-stopping: Trade-off between the convergence of Langevin dynamics and score estimation error.

» Condition number: How the score matching error A effects the posterior error.
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Convergence Analysis for Assimilation

Under Assumptions Al to A4. Suppose that the initial prior error satisfy
einit := [|Vxlog g1 — Vxlogqi ||L°°(1Rd)~
Then for each time step k € IN and error tolerance ¢ € (0, 1),
171 (Y per)) = Rk Y g Iy < Oeinie + ),

where the O notation omits logarithmic factors of €;,;; and ¢, and the constant behind the O notation is
independent of €;,,;; and e. Moreover, the step size i, the number of the Langevin iterations K and the
score matching error A satisfy:

22 2
=0 i) K=o Cluog (),
2= & k )

VkB3D3Cpq log(e2n3) + 115/
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© Numerical Experiments
Double-Well Potential
Kolmogorov flow

C. Duan (WHU) Score-based Sequential Langevin Sampling July 18,2025 20/26



Double-Well Potential

Dynamics model:

dX; = —VU(X;)dt + pdB;

» Double-well potential: U(x) = x* — 2x2.

Measurement model:

» Linear measurement model:
Y = Xi + oW
» Nonlinear measurement model:

Yy = exp(Xg — 7x) + oWy

C. Duan (WHU)

Score-based Sequential Langevin Sampling
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Kolmogorov flow

Ref. state

Dynamics model:

Low-resolution
observations

SSLS

— (u. Lo, 1
oru=—(u V)u—i—ReVu pr+F,

0=V -u

Grid sparse
observations

Measurement model:

» Low-resolution observation

SSLS

» Sparse observation

» Partial observation

Partial
observations

SSLS
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Ablation study: influence of the prediction score

» Score-based Langevin sampling

Ensemble
MLE

» Langevin sampling without prediction score

» Ensemble maximum likelihood estimation

w/o
prior score
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Uncertainty quantification
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© Conclusions
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Concluding Remarks

» Improvement of the computational efficiency.

» Provable non-log-concave posterior sampling.
» Refined error bounds for long-time assimilation.
» Applications in the real data.

Reference: Zhao Ding, Chenguang Duan, Yuling Jiao, Jerry Zhijian Yang, Cheng Yuan, and Pingwen Zhang.
Nonlinear Assimilation via Score-based Sequential Langevin Sampling. arXiv:2411.13443.

Thanks for your attention!

Homepage:

https://chenguangduan.github.io/

Google Scholar:
https://scholar.google.com/citations?user=RpmGgyMAAAAJT
Email: cgduan.math@gmail.com
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