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Applications of Data Assimilation

Numerical weather prediction (NWP) uses physical models of the atmosphere and oceans to predict the
weather based on the measurement data.

Physical models

Governing equations of atmosphere:
▶ conservation of momentum
▶ conservation of mass
▶ conservation of energy
▶ the equation of state for ideal gases
▶ conservation equation for water mass
▶ · · ·

Measurement data
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Problem Formulation

Dynamics model: A discrete time unobserved stochastic process (Xk)k≥1 satisfying

Xk+1 = Fk(Xk, Vk) ρk(Xk+1|Xk) = p(Xk+1|Xk)

▶ Fk is a known time-dependent model.
▶ Vk is a random variable with known distribution.

Measurement model: A discrete time observed stochastic process (Yk)k≥1 satisfying

Yk = Gk(Xk, Wk) gk(Yk|Xk) = p(Yk|Xk)

▶ Gk is a known time-dependent measurement operator.
▶ Wk is a random measurement noise with known distribution.
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Yk = Gk(Xk, Wk) gk(Yk|Xk) = p(Yk|Xk)

▶ Gk is a known time-dependent measurement operator.
▶ Wk is a random measurement noise with known distribution.

Data Assimilation

The goal of the data assimilation is to estimate the posterior distribution of the latent state Xk+1 given all
available measurements Y[k+1], that is, πk+1(Xk+1|Y[k+1]) for each k ≥ 1.
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Recursive Bayesian Filtering Framework

State-Space Model

Dynamics model Xk+1 = Fk(Xk, Vk) ←→ State transition density ρk(Xk+1|Xk)

Measurement model Yk+1 = Gk+1(Xk+1, Wk) ←→ Measurement likelihood gk+1(Yk+1|Xk+1)

πk+1(Xk+1|Y[k+1])

∝ p(Yk+1|Xk+1, Y[k])qk+1(Xk+1|Y[k])

= p(Yk+1|Xk+1, Y[k])
∫

p(Xk+1|Xk, Y[k])πk(Xk|Y[k])dXk

= gk+1(Yk+1|Xk+1)
∫

ρk(Xk+1|Xk)πk(Xk|Y[k])dXk

▶ Bayes’ rule

▶ Chapman-Kolmogorov identity

▶ Yk+1 ⊥⊥ Y[k]|Xk+1, and Xk+1 ⊥⊥ Y[k]|Xk
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Classical Methods for Data Assimilation

πk+1(Xk+1|Y[k+1])︸ ︷︷ ︸
current posterior

∝ gk+1(Yk+1|Xk+1)
∫

ρk(Xk+1|Xk) πk(Xk|Y[k])︸ ︷︷ ︸
previous posterior

dXk

πk(Xk|Y[k]) qk+1(Xk+1|Y[k]) πk+1(Xk+1|Y[k+1])

ρk(Xk+1|Xk) gk+1(Yk+1|Xk+1)

prediction update

▶ How to estimate the prediction distribution qk+1(Xk+1|Y[k])?
▶ How to sample from the posterior distribution πk+1(Xk+1|Y[k+1]) given the prediction and likelihood?

πk(Xk|Y[k]) ρk(Xk+1|Xk) gk+1(Yk+1|Xk+1) Limitations

Kalman Filter Gaussian approximation Gaussian Gaussian linear + Gaussian
Particle Filter particle approximation – – particle degeneracy
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Prediction and Score Matching

Prediction density qk+1(Xk+1|Y[k]) =
∫

ρk(Xk+1|Xk)πk(Xk|Y[k])dXk

πk(Xk|Y[k]) qk+1(Xk+1|Y[k]) πk+1(Xk+1|Y[k+1])

ρk(Xk+1|Xk) gk+1(Yk+1|Xk+1)

prediction update

How to estimate the score function∇ log qk+1(·|Y[k]) of the prediction distribution?
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qk+1(Xk+1|Y[k]) =
∫

ρk(Xk+1|Xk)πk(Xk|Y[k])dXk

▶ Given: X̂1
k , . . . , X̂n

k ∼
i.i.d. π̂k(Xk|Y[k]) ≈ πk(Xk|Y[k]).

▶ Prediction with dynamics model: Xi
k+1 = Fk(X̂i

k, Vi
k), for each 1 ≤ i ≤ n.

Xi
k+1 ∼ q̂k+1(Xk+1|Y[k]) :=

∫
ρk(Xk+1|Xk)π̂k(Xk|Y[k])dXk ≈ qk+1(Xk+1|Y[k]).

▶ Denoising score matching:

ŝk+1(·|Y[k]) = arg min
s:R×Rd→Rd

Lk+1(s) = EXk+1∼q̂k+1(·|Y[k])
Eε∼N(0,Id)

[
∥σs(Xk+1 + σε, Y[k]) + ε∥2

2
]

which is the score function of the Gaussian smoothed prediction distribution

ŝk+1(·|Y[k]) := ∇ log
( ∫

N(·; Xk+1, σ2Id)q̂k+1(Xk+1|Y[k])dXk+1

)
≈ ∇ log q̂k+1(·|Y[k])
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Update via Langevin Sampling

Bayes’ rule πk+1(Xk+1|Y[k+1]) ∝ gk+1(Yk+1|Xk+1)qk+1(Xk+1|Y[k])

πk(Xk|Y[k]) qk+1(Xk+1|Y[k]) πk+1(Xk+1|Y[k+1])

ρk(Xk+1|Xk) gk+1(Yk+1|Xk+1)

prediction update

How to sample from the posterior distribution πk+1(·|Y[k+1]) given the prediction and likelihood?
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πk+1(Xk+1|Y[k+1]) ∝ gk+1(Yk+1|Xk+1)qk+1(Xk+1|Y[k])

▶ Langevin dynamics

dZt = ∇ log πk+1(Zt|Y[k+1])dt +
√

2dBt,

=
{
∇ log gk+1(Yk+1|Zt) +∇ log qk+1(Zt|Y[k])

}
dt +

√
2dBt, Z0 ∼ q̂k+1(·|Y[k]).

▶ Prediction score estimation
▶ Euler-Maruyama discretization

▶ Score-based Langevin Monte Carlo

Ẑ(k+1)h = Ẑkh + h
{
∇ log gk+1(Yk+1|Ẑkh) + ŝk+1(Ẑkh, Y[k])

}
+
√

2hξk, Ẑ0 ∼ q̂k+1(·|Y[k]).
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Annealing Strategy

Interpolations between the prediction and posterior distribution:

πm
k+1(·|Y[k+1]) ∝ πk+1(·|Y[k+1])

βm qk+1(·|Y[k])
1−βm , 0 ≤ m ≤ M

▶ Annealing schedule: 0 ≡ β0 < β1 < · · · < βM ≡ 1.

qk+1(·|Y[k]) π1
k+1(·|Y[k+1]) · · · πM−1

k+1 (·|Y[k+1]) πk+1(·|Y[k+1])

β1 · · · βM−1
inverse temperatures

LMC LMC

qk+1(·|Y[k]) πk+1(·|Y[k+1])
LMC

LMC

ALMC

∇ log πm
k+1(·|Y[k+1]) = βm∇ log πk+1(·|Y[k+1]) + (1− βm)∇ log qk+1(·|Y[k])

= βm∇ log gk+1(Yk+1|·) +∇ log qk+1(·|Y[k])
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Summary of Procedure

X̂1
k , . . . , X̂n

k ∼ π̂k(·|Y[k])

X1
k+1, . . . , Xn

k+1 ∼ q̂k+1(·|Y[k])

ŝk+1(·, Y[k]) ≈ ∇ log q̂k+1(·|Y[k]) ∇ log gk+1(Yk+1|·)

b̂k+1(·, Y[k+1]) ≈ ∇ log π̂k+1(·|Y[k+1])

X̂1
k+1, . . . , X̂n

k+1 ∼ π̂k+1(·|Y[k+1])

Prediction Update

dynamics
model

score
matching

Langevin
sampling

Bayes’ rule

prediction score estimator gradient of the log-likelihood

posterior score estimator
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Algorithm 1: Score-based Sequential Langevin Sampling for data assimilation.
Input: The observations (Yk)k∈N, the dynamics model (Fk)k∈N, the likelihood {gk(Yk|·)}k∈N.
Output: A particle approximation X̂1

k+1, . . . , X̂n
k+1 to the distribution πk+1(·|Y[k+1]).

1 # Initial posterior sampling.
2 Sample from the gauss of the initial prior distribution X1

1, . . . , Xn
1 ∼i.i.d. q̂1.

3 Estimate the score from {Xi
1}n

i=1 by score matching ŝ1.
4 Sample from the posterior π̂1(·|y1) by Langevin sampling: X̂1

1, . . . , X̂n
1 ← ALMC(X1

1, . . . , Xn
1 , ŝ1, g1(Y1|·)).

5 # Recursive posterior sampling.
6 for k = 1, 2, . . . do
7 # Prediction step.
8 Run the dynamics model: Xi

k+1 ← Fk(X̂i
k, Vi

k) with Vi
k ∼ pV for 1 ≤ i ≤ n.

9 Estimate the prediction score from {Xi
k+1}n

i=1 by score matching ŝk+1(·, Y[k]).
10 # Update step.
11 Sample from the posterior πk+1(·|Y[k+1]) by Langevin sampling:

X̂1
k+1, . . . , X̂n

k+1 ← ALMC(X1
k+1, . . . , Xn

k+1, ŝk+1(·, Y[k]), gk+1(Yk+1|·)).
12 end
13 return X̂1

k+1, . . . , X̂n
k+1
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Assumptions

▶ A1. Lipschitz score. For each k ∈N, the posterior score is λ-Lipschitz on Rd, that is, for each x1, x2 ∈ Rd,

∥∇ log πk+1(x1|Y[k+1])−∇x log πk+1(x2|Y[k+1])∥2 ≤ λ∥x1 − x2∥2.

▶ A2. Log-Sobolev inequality. For each k ∈N, the posterior distribution satisfies a log-Sobolev inequality
with constant CLSI, that is, for each function f ∈ C∞

0 (Rd),

Ent( f 2) ≤ 2CLSIE
[
∥∇ f ∥2

2
]
,

where the entropy is defined as Ent(g) = E[g log g]−E[g] log E[g], and the expectation is taken with
respect to the posterior distribution πk+1(·|Y[k+1]).
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▶ A3. Boundedness and condition number. For each k ∈N,
▶ there exists B ≥ 1 such that ρk(x|Xk), ∥∇ρk(x|Xk)∥∞ ≤ B for x ∈ Rd,
▶ there exists D ≥ 1 such that qk+1(x|Y[k]) ≥ D−1 for x ∈ Ωk+1 := supp(qk+1(·|Y[k])),
▶ q1(x), ∥∇q1(x)∥∞ ≤ B and q1(x) ≥ D−1 for x ∈ Ω1 := supp(q1), and
▶ there exists κ > 0 such that

supx g1(Y1|x)∫
g1(Y1|x)q1(x)dx

,
supx gk+1(Yk+1|x)∫

gk+1(Yk+1|x)qk+1(x|Y[k])dx
≤ κ.

▶ A4. Error of score matching. There exists a score matching tolerance ∆ ∈ (0, 1) such that

EX1

[
∥∇x log q̂1(X1)− ŝ1(X1)∥2

2
]
≤ ∆2,

EXk+1

[
∥∇x log q̂k+1(Xk+1|Y[k])− ŝk+1(Xk+1, Y[k])∥2

2
]
≤ ∆2,

for each k ∈N. Here the expectation EX1
[·] is taken with respect to X1 ∼ q̂1, and the expectation EXk+1

[·]
is taken with respect to Xk+1 ∼ q̂k+1(·|Y[k]).
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Convergence Analysis for Posterior Sampling

Under Assumptions A1 to A4. Then for each k ∈N and each terminal time T = Kh,

∥πk+1(·|Y[k+1])− π̂k+1(·|Y[k+1])∥2
TV︸ ︷︷ ︸

posterior error

≲ exp
(
− T

5CLSI

)
η2

χ︸ ︷︷ ︸
convergence of LD

+ dCLSIλ
2h︸ ︷︷ ︸

discretization error

+
√

κB3D3
(
T + CLSIηχ

)
∆︸ ︷︷ ︸

score estimation error

+ B4D4T ∥πk(·|Y[k])− π̂k(·|Y[k])∥2
TV︸ ︷︷ ︸

prior error

,

where the step size h and the initial distribution π0
k (·|Y[k]) satisfies

h ≲
1

dCLSIλ2 , χ2(π0
k+1(·|Y[k+1])∥πk+1(·|Y[k+1])

)
≤ η2

χ.

▶ Early-stopping: Trade-off between the convergence of Langevin dynamics and score estimation error.
▶ Condition number: How the score matching error ∆ effects the posterior error.
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Convergence Analysis for Assimilation

Under Assumptions A1 to A4. Suppose that the initial prior error satisfy

εinit := ∥∇x log q1 −∇x log q̂1∥L∞(Rd).

Then for each time step k ∈N and error tolerance ε ∈ (0, 1),

∥πk+1(·|Y[k+1])− π̂k+1(·|Y[k+1])∥TV ≤ Õ(εinit + ε),

where the Õ notation omits logarithmic factors of εinit and ε, and the constant behind the Õ notation is
independent of εinit and ε. Moreover, the step size h, the number of the Langevin iterations K and the
score matching error ∆ satisfy:

h = Θ
( ε2

dCLSIλ2

)
, K = Θ

( dλ2C2
LSI

ε2 log
( η2

χ

ε2

))
,

∆ = Θ
( ε2
√

κB3D3CLSI

1
log(ε−2η2

χ) + ηχ

)
.
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Double-Well Potential

Dynamics model:

dXt = −∇U(Xt)dt + βdBt

▶ Double-well potential: U(x) = x4 − 2x2.

Measurement model:
▶ Linear measurement model:

Yk = Xk + σWk

▶ Nonlinear measurement model:

Yk = exp(Xk − γk) + σWk
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Kolmogorov flow

Dynamics model:
∂tu = −(u · ∇)u +

1
Re
∇2u− 1

ρ
∇p + F,

0 = ∇ · u.

Measurement model:
▶ Low-resolution observation
▶ Sparse observation
▶ Partial observation
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Ablation study: influence of the prediction score
▶ Score-based Langevin sampling
▶ Langevin sampling without prediction score
▶ Ensemble maximum likelihood estimation
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Uncertainty quantification
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Concluding Remarks

▶ Improvement of the computational efficiency.
▶ Provable non-log-concave posterior sampling.
▶ Refined error bounds for long-time assimilation.
▶ Applications in the real data.

Reference: Zhao Ding, Chenguang Duan, Yuling Jiao, Jerry Zhijian Yang, Cheng Yuan, and Pingwen Zhang.
Nonlinear Assimilation via Score-based Sequential Langevin Sampling. arXiv:2411.13443.

Thanks for your attention!
Homepage:
https://chenguangduan.github.io/
Google Scholar:
https://scholar.google.com/citations?user=RpmGgyMAAAAJ
Email: cgduan.math@gmail.com
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