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Abstract. In this paper, we present a deep learning approach to tackle elliptic inverse

source problems. Our method combines Tikhonov regularization with physics-informed

neural networks, utilizing separate neural networks to approximate the source term and

solution. Firstly, we construct a population loss and derive stability estimates. Further-

more, we conduct a convergence analysis of the empirical risk minimization estimator.

This analysis yields a prior rule for selecting regularization parameters, determining the

number of observations, and choosing the size of neural networks. Finally, we validate

our proposed method through numerical experiments. These experiments also demon-

strate the remarkable robustness of our approach against data noise, even at high levels

of up to 50%.
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1. Introduction

Inverse source problems have attracted considerable interest in various scientific and

engineering domains, which arise in practical applications over natural phenomena such as

pollution source identification [4,5,10,45], dislocation problems [6] and inverse problems

of gravimetry [29]. Additionally, they have found extensive use in a range of biomedical

imaging techniques, including photo-acoustic and thermo-acoustic tomography, optical to-

mography [2], electroencephalography (EEG) [38], magnetoencephalography (MEG) [26],

and bioluminescence tomography (BLT) [60]. Of particular relevance to this paper is the

modeling of the seawater intrusion phenomenon [7,17], where the source term represents

the pumping wells of freshwater within the context of seawater intrusion.
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In this work, we aim at identifying the unknown source density in elliptic problems from

interior measurements. Let Ω ⊆ Rd (d ≥ 1) be a simply connected bounded domain with

sufficiently smooth boundary ∂Ω. Consider the following second order elliptic equation

with Neumann boundary condition:

−∆u+ V (x)u= f (x) in Ω,

∂nu= g(x) on ∂Ω,
(1.1)

where the potential function V and the boundary flux g are given. Further, the potential

function V has a positive lower bound, that is, V (x)≥ V0 > 0 for each x ∈ Ω. Let f † be the

ground truth space-dependent source density and u† be the solution of (1.1) corresponding

to the source density f †. The elliptic inverse source problems aim to recover the unknown

source density from finite number of random samples generated from the following noisy

model:

yδ(x) = u†(x) + ξ(x), zδ(x) =∇u†(x) + ζ(x), x ∼ U(Ω), (1.2)

where ξ(x) and ζ j(x), j ∈ [d] are noise terms, and U(Ω) represents the uniform distribu-

tion on Ω. Further, we assume that

‖ξ‖L∞(Ω) ≤ δ, ‖ζ j‖L∞(Ω) ≤ δ, j ∈ [d], (1.3)

where δ is known as the noise level in the context of inverse problems. Notice that H1(Ω)-

norm measurement in (1.2) is stronger than the usual L2(Ω)-norm measurement, the tech-

nical motivation for which is the necessity to establish stability estimates (see Theorem 2.1)

for reconstructions. However, H1(Ω)-norm measurement also makes sense, which has been

used in [36, 44]. For example, in the context of inverse problems of gravimetry [29], the

gravitational force ∇u† can be measured directly, and the measurement of gravitational

field u† can be perceived by the noisy measurement of gravitational force. Besides, if only

the L2(Ω)-norm measurement is available, the measurement of gradient can be obtained

by some numerical differentiation methods after pre-smoothing the raw noisy data of u†.

In addition, the provable H1(Ω)-norm estimation can also be obtained from noisy L2(Ω)-

measurements via the finite element method [28] or deep Sobolev regression [18].

There have been extensive study devoted to the uniqueness and stability of inverse

source problems [7,8]. The uniqueness can be obtained by means of Holmgren’s theorem

and the regularity of the forward problem, as it was done in [8]. Further, the Lipschitz

stability estimates for inverse source problems are proposed in [7].

Due to the ill-posed nature of inverse source problems [7, 21, 27, 56], constructing ac-

curate and stable numerical approximations can be challenging. Several reconstruction

methods have been developed to address this issue [1,28,39,40,45,58,61]. One popular ap-

proach involves reformulating the inverse source problem as an output least-squares PDE-

constrained optimization problem, complemented with Tikhonov regularization [14, 30].

By formulating it as an optimization problem, classical optimization algorithms can then

be employed for solution. In practical computation, one still needs to discretize Tikhonov

functional and the PDE constraint, which is often achieved by the Galerkin finite element
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method (FEM). However, the solution of PDE-constrained optimization problems neces-

sitates the development of complex optimization algorithms tailored to each case. Fur-

thermore, Galerkin approximation is mesh-dependent, resulting in exponential growth of

computational cost with dimensionality, commonly referred to as the curse of dimension-

ality (CoD). Therefore, a simple yet effective approach is to convert the PDE-constrained

optimization problem into an unconstrained problem by introducing an augmented objec-

tive functional that incorporates a penalty inspired by physics-informed neural networks

(PINNs) [55]. By employing neural networks to approximate the unknown source den-

sity and the solution, and discretizing the objective functional using Monte Carlo methods,

a mesh-free approach can be achieved, which is easy to implement and has the potential to

alleviate the curse of dimensionality.

In this study, we present a novel approach based on neural networks for identifying the

source density in elliptic equations using interior measurements. We also conduct a com-

prehensive analysis to determine the convergence rates of the reconstructions with respect

to the noise level. To begin with, we establish stability estimates that serve as the basis for

determining an appropriate regularization functional. Subsequently, we employ the Monte

Carlo method to discretize the population risk. By minimizing the empirical risk within

pre-specified neural network classes, we obtain reconstructions of the source density and

solution. To analyze the convergence rates of the reconstructions, we demonstrate that the

population risk is influenced by several factors. These include the approximation error, the

generalization error, the error arising from data noise, and a regularization term controlled

by the regularization parameter. Notably, we observe that while the approximation error

decreases as the size of the neural network increases, the generalization error exhibits an

opposite trend. Consequently, by striking a balance between approximation power and

generalization ability, we can select neural network classes that offer optimal performance.

By combining the analysis of population risk error with the aforementioned stability esti-

mates, we derive the convergence rates of the reconstructions in relation to the noise level.

Furthermore, our study provides valuable a priori guidance for selecting appropriate reg-

ularization parameters, determining the number of samples, and choosing the size of the

neural networks. Finally, through a series of numerical experiments, we demonstrate the

remarkable stability of our method against data noise.

In recent years, there has been an increasing interest in neural network-based methods

for solving ill-posed problems [9,19,35,36,47,55,62,63]. These approaches typically for-

mulate a loss function tailored to the specific problem and use neural networks to approx-

imate unknown functions. The population risk is then discretized using the Monte Carlo

method. By adopting a mesh-free strategy, methods in this line offer a promising approach

for addressing high-dimensional problems. One particularly notable and widely recognized

framework within these works is physics-informed neural networks (PINNs) [55]. The orig-

inal PINNs scheme has been applied to recover constant coefficients in PDEs [55] and to

estimate derivative orders in fractional PDEs [25,53]. Additionally, [50] utilized PINNs to

solve Cauchy problems and data assimilation. For reconstructing non-constant coefficients

in PDEs, a natural approach is to approximate both the solution and the unknown coefficient

function using two neural networks. These networks are then coupled through a loss func-
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tion that combines a least-squares data-fitting loss with a physics-informed loss. The idea

can be traced back to its initial mention in [9], where coupled PINNs were compared with

inverse weak adversarial networks (IWANs) [9] in numerical experiments. Subsequently,

this methodology has been extended and applied to a variety of inverse problems, includ-

ing holography inverse-design problems [47], parabolic inverse source problems [64], and

current density impedance imaging [19]. The most relevant works are [62, 63], where

the source term is recovered from measurements of the solution in partial domains, using

the modified deep Galerkin method. In addition, [37] employed PINNs to solve elliptic

distributed optimal control problems, which closely relates to the inverse source problem

addressed in this study.

While PINNs-based approaches have shown promising empirical performance in previ-

ous studies, most of them lack rigorous theoretical guarantees. A comprehensive theoretical

understanding of a reconstruction method should address two important questions:

1. What are the convergence rates of the population risk of reconstructions?

2. How does the error of reconstructions converge as the population risk decreases?

Answering these questions would provide convergence rates for the reconstructions. The

first question pertains to the statistical learning theory, while the second question relates

to stability estimates for inverse problems. Unfortunately, to the best of our knowledge,

none of the existing theoretical analyses of PINNs-based reconstruction approaches provide

a complete answer to these two questions. In a recent work by [19], a convergence rate of

the population risk is derived by considering the trade-off between the approximation error

and the generalization error. However, due to the lack of stability estimates, this analysis

does not specifically provide a convergence rate for the reconstruction itself. Other works

such as [50, 63] primarily focus on the generalization error in their analysis, overlooking

the approximation power of neural networks. As a result, these studies cannot fully address

the first question and do not provide guidance on how to select the size of neural networks.

To answer the second question, [50, 63] utilize conditional stability estimates for elliptic

inverse source problems, assuming the unknown source density to be analytic. Conversely,

the stability estimates established in our work require weaker regularity conditions for the

ground truth source density.

1.1. Contributions

The contributions of this paper are summarized as follows:

1. Within the framework of Tikhonov regularization, we introduce a loss function for el-

liptic inverse source problems using physic-informed neural networks. Subsequently,

we establish stability estimates that provide a solid theoretical foundation for the

validity of our method.

2. We establish a rigorous convergence analysis for reconstructions ‖u−u†‖H1(Ω) = O (δ)
and ‖ f − f †‖L2(Ω) = O (δ1/2), which also provide a priori guides for the selection of



464 C. Duan, Y. Jiao, J.-Z. Yang and P. Zhang

hyper-parameters such as the regularization parameter, the number of samples and

the size of neural networks.

3. Our reconstruction method is easy to implement and performs well on recovering

both smooth and non-smooth source densities. It also shows remarkable robustness

against data noise in numerical experiments, remaining highly accurate in presence

of up to 50% noise.

1.2. Preliminaries and notations

Definition 1.1 (Fully-connected neural networks). A fully-connected neural network ψ :

R
N0 → RNL+1 is a function defined by

ψ(x) = TL

�
̺(TL−1(· · ·̺(T0(x)) · · · ))

�
,

where the activation function ̺ is applied component-wisely and Tℓ(x) := Aℓx+ bℓ is an affine

transformation with Aℓ ∈ RNℓ+1×Nℓ and bℓ ∈ RNℓ for ℓ= 0, . . . , L.

Throughout this paper, we consider the case N0 = d and NL+1 = 1. The parameter of

the neural network ψ is defined as the collection of all its weights θ = {(Aℓ, bℓ)}Lℓ=0
. The

positive integer L is the depth of the neural network and S :=
∑L
ℓ=1(‖Aℓ‖0 + ‖bℓ‖0) is the

total number of nonzero weights. Moreover, we denote by R the bound of nonzero weights

in absolute value, that is, R = max0≤ℓ≤L max{maxi, j |Aℓ,i j|,maxi |bℓ,i|}. Finally, we define

the function class N̺(L,S,R) as the collection of ̺-neural networks with at most L layers,

at most S nonzero weights and each weight are bounded by R. The approximation property

of tanh-neural networks have been established as follows.

Lemma 1.1 (cf. Gühring & Raslan [24, Theorem 3.8]). Let d , s, k ∈ N+ such that 0≤ k < s.

Let ̺ = tanh andHs,d = {g : ‖g‖Hs((0,1)d ) ≤ 1}. Then it holds that

sup
g∈Hs,d

inf
ψ∈N̺(L,S,R)

‖ψ− g‖Hk((0,1)d ) ≤ ǫ,

provided that L = c log(d + k), S = Cǫ−d/(s−k−µ) and R = Cǫ−(9d+2k+4µ)/(2(s−k−µ))−2, where

c,µ > 0 are absolute constants and the constant C depends on s, k, d and µ.

To measure the complexity of the function class, we next introduce Rademacher com-

plexity [12], which plays an important role in generalization analysis [12,51].

Definition 1.2 (Rademacher Complexity). Let Ω ⊆ Rd (d ≥ 1) be a bounded domain and

let µ be a measure on X . Suppose that G is a family of functions mapping from X to R and

{x i}mi=1
is a set of samples i.i.d. drawn from µ. Let σ = {σi}mi=1

be a set of i.i.d. Rademacher

variables and independent of {x i}mi=1
. Then the empirical Rademacher complexity of G with

respect to the sample set {x i}mi=1
is defined as

ÒR{xi}mi=1
(G ) = Eσ
�

sup
g∈G

1

m

m∑

i=1

σi g(x i)

�
,
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where Eσ[·] = E[·|{x i}mi=1
]. Further, the Rademacher complexity of G is the expectation of the

empirical Rademacher complexity over all samples of size m drawn according to µm, that is,

Rm(G ) = E{xi}mi=1

�
ÒR{xi}mi=1

(G )
�
.

The rest of the paper is organized as follows. Section 2 introduces the loss function

for source recovery in elliptic equations and discusses stability estimates. In Section 3, we

present a data-dependent oracle inequality (Section 3.1) that characterizes the population

risk of reconstructions. Moreover, convergence rates for reconstructions are derived in

Section 3.2. To complement our theoretical analysis, a series of numerical experiments

is presented in Section 4, demonstrating the exceptional stability of our method in the

presence of data noise. The proofs of the theoretical results are provided in Section 5. The

conclusions and discussions are summarized in Section 6.

2. Reconstruction Methods

We will study in this section the stability estimates, based on which we propose a neural

network-based method for the recovery of unknown source density in the elliptic system

(1.1). Throughout this section, we assume that V ∈ L∞(Ω), f ∈ L2(Ω) and g ∈ H1/2(∂Ω)

in (1.1).

In view of the ill-posedness of elliptic inverse source problems, researchers usually em-

ploy Tikhonov regularization to transform (1.1) and (1.2) into an optimal control problem

min
(u, f )

Jλ(u, f ) = ‖u− yδ‖2
L2(Ω)

+ ‖∇u− zδ‖2
L2(Ω)

+λR( f )

subject to

¨
−∆u+ V (x)u= f (x) in Ω,

∂nu = g(x) on ∂Ω,

(2.1)

where λ > 0 is the regularization parameter andR is the pre-specified regularization func-

tional. Inspired by physics-informed neural networks (PINNs), instead of putting a hard-

constraint in the optimization, we treat the PDE constraints in (2.1) as a soft-constraint,

which leads to the following unconstrained optimization problem:

�
uδλ, f δλ

�
∈ arg min

(u, f )

Lλ(u, f ) = Jλ(u, f ) + Rint(u, f ) + Rbdy(u), (2.2)

where

Rint(u, f ) = ‖ f +∆u− Vu‖2
L2(Ω)

, Rbdy(u) = ‖∂nu− g‖2
L2(∂Ω)

.

In addition, the functional Lλ(·, ·) is called the population risk. The following theorem

demonstrates that reconstructions converge to the ground truth as excess risks decrease,

when we choose appropriate regularization functional.

Theorem 2.1 (Stability Estimates for Elliptic Equations). Under the noise model (1.2). LetR
be the squared H1(Ω)-norm — i.e. R( f ) = ‖ f ‖2

H1(Ω)
. Suppose that (u†, f †) ∈ H2(Ω)×H1(Ω)
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satisfies (1.1), and let the population risk Lλ(·, ·) defined as (2.2). Then for each (u, f ) ∈
H2(Ω)×H1(Ω) the following inequalities hold:

‖u− u†‖H1(Ω) ≤ L
1/2

λ
(u, f )Cδ,

‖ f − f †‖L2(Ω) ≤ C
�
1+λ−1/4 L

1/4

λ
(u, f )
��

L
1/4

λ
(u, f ) +δ1/2
�
,

where C is a positive constant only depending on Ω, ‖V‖L∞(Ω) and ‖ f †‖H1(Ω).

Remark 2.1 (Convergence Rates in Population Level). With the aid of Theorem 2.1, we

can establish convergence rates of (uδ
λ
, f δ
λ
) defined as (2.2). In fact, it is apparent that

Lλ(u
δ
λ
, f δ
λ
) ≤ O (δ2) + O (λ). Under the parameter choice λ = O (δ2), we have the conver-

gence rates ‖uδ
λ
− u†‖H1(Ω) = O (δ) and ‖ f δ

λ
− f †‖L2(Ω) = O (δ1/2).

Since there is no way to calculate expectations and integrals in (2.2) directly, we employ

Monte Carlo methods to approximate them by empirical averages. Let {xΩi }mi=1
and {x Γi }mi=1

be sets of independently and identically distributed samples drawn from U(Ω) and U(∂Ω),

respectively. Then we define the empirical objective functional by

bJλ(u, f ) =
|Ω|
m

m∑

i=1

�
u
�
xΩ

i

�
− yδ
�
xΩ

i

��2
+
|Ω|
m

m∑

i=1



∇u
�
xΩ

i

�
− zδ
�
xΩ

i

�

2
2
+λ ÒR( f ),

where

ÒR( f ) = |Ω|
m

m∑

i=1

�
f 2
�
xΩi

�
+


∇ f
�
xΩi

�

2
2

�

is the empirical counterpart of the squared H1(Ω)-norm of f . Therefore the empirical risk

is given by
bLλ(u, f ) = bJλ(u, f ) + bRint(u, f ) + bRbdy(u), (2.3)

where the empirical physics-informed penalty terms are defined by

bRint(u, f ) =
|Ω|
m

m∑

i=1

�
f
�
xΩ

i

�
+∆u
�
xΩ

i

�
− V
�
xΩ

i

�
u
�
xΩ

i

��2
,

bRbdy(u) =
|∂Ω|

m

m∑

i=1

�
∂nu
�
x Γ

i

�
− g
�
x Γ

i

��2
.

It is straightforward to verify that EbLλ(u, f ) = Lλ(u, f ) for each fixed (u, f ). We next select

two classes of neural networks U ⊆ H2(Ω) and F ⊆ H1(Ω), namely hypothesis classes.

Minimizing the empirical risk (2.3) with respect to (u, f ) ∈ U ×F yields an estimator of

(u†, f †) as follows: �
buδλ, bf δλ
�
∈ arg min
(u, f )∈U×F
bLλ(u, f ), (2.4)

which is called the empirical risk minimizer (ERM). See Algorithm 2.1 for more details.
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Algorithm 2.1 Recover the Unknown Source in Elliptic Equations.

1: Sample point sets {xΩ
i
}m

i=1
⊆ Ω and {x Γ

i
}m

i=1
⊆ ∂Ω.

2: Construct neural networks (u(θ), f (φ)) ∈ H2(Ω)×H1(Ω).

3: Initialize parameters (θ ,φ) randomly.

4: for k = 1 : num_epochs do

5: Compute the empirical risk defined by (2.3)

bLλ
�
u(θ), f (φ)
�
= bJλ
�
u(θ), f (φ)
�
+ bRint

�
u(θ), f (φ)
�
+ bRbdy

�
u(θ)
�
.

6: Back propagation: (gθ , gφ) =∇(θ ,φ)
bLλ(u(θ), f (φ)).

7: Update (θ ,φ) by a SGD-type algorithm (θ ,φ)← SGD{(θ ,φ), (gθ , gφ),α}.
8: end for

Output: Estimator (u(θ), f (φ)).

3. Convergence Analysis

Up to now, we have proposed convergence rates of our method in population level (see

details in Remark 2.1). However, the rate of convergence of the reconstruction (buδ
λ
, bf δ
λ
)

is what we are really interested in. We will study in this section the oracle inequality and

convergence rates of methods proposed in Section 2 for the recovery of the source density in

the elliptic system (1.1). Throughout this section, we assume that V ∈ L∞(Ω), f ∈ L2(Ω)

and g ∈ H1/2(∂Ω) in (1.1).

3.1. Oracle inequality

In this section, we present an oracle inequality that decomposes the population risk of

the reconstruction into four components: approximation error, generalization error, regu-

larization term, and noise term. Oracle inequalities have been extensively studied in the

field of non-parametric regression, as evidenced by previous works such as [13,16,22,34,

42,43,52,57]. In addition, several works have specifically proposed oracle inequalities (in

the expectation form) for PINNs-type methods, including [19,31,48].

Before proceeding, we introduce some notations as follows. Suppose BU ≥ 1 and

BF ≥ 1 are two constant defined as follows:

BU = sup
u∈U∪{u†}

¦
‖u‖L∞(Ω) + d max

j∈[d]
‖∂ ju‖L∞(Ω) + d max

j∈[d]
‖∂ 2

j j
u‖L∞(Ω)

©
,

BF = sup
f ∈F∪{ f †}

¦
‖ f ‖L∞(Ω) + d max

j∈[d]
‖∂ j f ‖L∞(Ω)

©
.

Further, for simplicity of notation we define the function classes ∂ jU = {∂ ju : u ∈ U },
∂ 2

j j
U = {∂ 2

j j
u : u ∈ U }, ∂nU = {∂nu : u ∈ U } and ∂ jF = {∂ j f : f ∈ F}, and also define

ÒR(2){xΩ
i
}m

i=1

(U ) = ÒR{xΩ
i
}m

i=1
(U ) + d max

j∈[d]
ÒR{xΩ

i
}m

i=1
(∂ jU ) + d max

j∈[d]
ÒR{xΩ

i
}m

i=1

�
∂ 2

j j
U
�
,
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ÒR(1){xΩ
i
}m

i=1

(F ) = ÒR{xΩ
i
}m

i=1
(F ) + d max

j∈[d]
ÒR{xΩ

i
}m

i=1
(∂ jF ).

For the population risk proposed in (2.2), we now derive a distribution-free oracle in-

equality in the high-probability form.

Theorem 3.1 (A Data-Dependent Oracle Inequality). Let (buδ
λ
, bf δ
λ
) be the reconstructions

defined by (2.4). Then for each λ ∈ (0,1) and τ ∈ (0,1), the following inequality holds with

probability at least 1− (13+ 7d)τ:

Lλ
�
buδλ, bf δλ
�
≤ CEapp(U ,F ) + CEgen(U ,F , n) + 2λ‖ f †‖2

H1(Ω)
+ Cδ2,

where the approximation error Eapp and the generalization error Egen are defined as

Eapp(U ,F ) = inf
u∈U
‖u− u†‖2

H2(Ω)
+ inf

f ∈F
‖ f − f †‖2

H1(Ω)
,

Egen(U ,F , m) = (BU + BF +δ)
n
ÒR(2){xΩ

i
}m

i=1

(U ) +ÒR(1){xΩ
i
}m

i=1

(F )
o

+ BUÒR{xΓ
i
}m

i=1
(∂nU ) +
¦

B2
U + B2

F +δ
2
©√√ log(1/τ)

2m
,

and C is a positive constant only depending on d ,Ω, ‖V‖L∞(Ω) and ‖g‖L∞(∂Ω).

Remark 3.1 (Approximation Error). Lemma 1.1 shows that if we choose neural network

classes (U ,F ) with sufficiently large depth, number of non-zero samples and weight ra-

dius, the approximation error Eapp in Theorem 3.1 can be arbitrary small.

Remark 3.2 (Generalization Error). Observe from Theorem 3.1 that the generalization

error is dominated by empirical Rademacher complexities, which only depends on data

sets {xΩ
i
}m

i=1
and {x Γ

i
}m

i=1
(data-dependent).

Remark 3.3. The oracle inequality shown in Theorem 3.1 demonstrates that the population

risk achieved by the reconstructions is nearly as small as the summation of the optimal risk

(noise term) O (δ2) and the regularization parameter O (λ). This means that Lλ(buδλ, bf δ
λ
) =

O (δ2)+O (λ), when we choose appropriate neural network classes (U ,F ) and sufficiently

large number of samples m.

3.2. Convergence rates

The oracle inequality proposed in Section 3.1 shows that for fixed noise level and reg-

ularization parameter, the population risk is dominated by the approximation error and

generalization error, which depend on the selection of neural network classes (U ,F ).
Lemma 1.1 shows how the approximation error decreases as the size of neural networks

increase. The generalization error shall be discussed in this section.

We first estimate the bounds of function classes associated with (U ,F ).
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Lemma 3.1. Let the activation ̺ be set as ̺ = tanh. Let the neural network classes (U ,F )
be U =N̺(LU ,SU ,RU ) and F =N̺(LF ,SF ,RF ). It follows that

BU ≤ RU SU + dR
LU
U S

LU
U + 2dR

2LU
U S

2LU
U ,

BF ≤ RFSF + dR
LF
F S

LF
F .

It remains to consider Rademacher complexities of function classes defined in Theo-

rem 3.1. How to compute Rademacher complexity of a neural network class has been

widely discussed in the literature on statistical learning theory [3, 51]. However, there is

no uniform method for calculating Rademacher complexity of the derivative class of neural

networks because the derivative operator is not Lipschitz continuous. We employ a sim-

ilar argument to [19, 32, 35–37] to calculate Rademacher complexity of the tanh-neural

network and its derivative class as follows.

Lemma 3.2. Let the activation ̺ be set as ̺ = tanh. Let the neural network class U be

U =N̺(LU ,SU ,RU ). It follows that

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(U )≤ c

√√
S3
U R2
U LU log(SU RU )

log m

m
,

max
j∈[d]

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(∂ jU ) ≤ c

√√
S2L+1
U R2L

U LU log(SU RU )
log m

m
,

max
j∈[d]

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(∂ 2

j j
U )≤ c

√√
S4L+1
U R4L

U LU log(SU RU )
log m

m
,

sup
{xΓ

i
}m

i=1

ÒR{xΓ
i
}m

i=1
(∂nU ) ≤ c

√√
dS2L+1
U R2L

U LU log(SU RU )
log m

m
,

where c is an absolute constant.

It is straightforward to obtain the following Rademacher complexity estimates corre-

sponding to neural network class F .

Corollary 3.1. Let the activation ̺ be set as ̺ = tanh. Let the neural network class F be

F =N̺(LF ,SF ,RF ). It follows that

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(F ) ≤ c

√√
S3
FR2
F LF log(SFRF )

log m

m
,

max
j∈[d]

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(∂ jF ) ≤ c

√√
S2L+1
F R2L

F LF log(SFRF )
log m

m
,

where c is an absolute constant.
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Remark 3.4. It is worth noting, based on Lemmas 3.1, 3.2, and Corollary 3.1, that the

generalization error, signifying the discrepancy between the population risk (expectation)

and the empirical risk (finite average), is influenced not only by the sample size but also

by the size of neural networks. In contrast, the generalization bounds presented in [63,

Theorem 3.3] merely quantify the convergence with respect to the sample size, without

considering the impact of the size of neural networks. As a result, the findings in [63,

Theorem 3.3] fail to provide a theoretical understanding of how the size of neural networks

affects the error.

Remark 3.5 (Trade-Offs Between Approximation and Generalization). It is apparent from

Lemma 3.2 and Corollary 3.1 that as the depth, the number of non-zero weights, and

the bound on weights become larger, the generalization error will become larger, while

Lemma 1.1 states that the approximation error will decrease. Therefore, there exists a trade-

off between the approximation and generalization errors.

With the aid of Theorem 3.1, Lemmas 1.1, 3.1, 3.2 and Corollary 3.1, we finally achieve

the following convergence rates of reconstructions of source density in elliptic equations.

Theorem 3.2 (Convergence Rates of Population Risk). Let δ ∈ (0,1),α ≥ 1 and ̺ =

tanh. Suppose that (u†, f †) ∈ Hα+2(Ω) × Hα+1(Ω). Set U = N̺(LU ,SU ,RU ) and F =
N̺(LF ,SF ,RF ), where

LU = O (1), SU = O
�
ǫ−d/(α−µ)�,

RU = O
�
ǫ−(9d+4+4µ)/(2(α−µ))−2

�
,

LF = O (1), SF = O
�
ǫ−d/(α−µ)�,

RF = O
�
ǫ−(9d+2+4µ)/(2(α−µ))−2

�
.

Suppose that the number of samples m is larger than O (ǫ−4−c((d+1)/(α−µ)) log(d+2)). Then the

following inequality holds for each λ ∈ (0,1) with probability at least 1− (13+ 7d)τ:

Lλ
�
buδλ, bf δλ
�
≤ O
�
ǫ2 log1/2

�
1

ǫ

��
+ O (λ) + O (δ2) + O

�
ǫ(d+4(α−µ))/(2(α−µ)) log1/2

�
1

τ

��
.

By combining Theorem 3.2 with stability estimates (Theorem 2.1), we obtain the fol-

lowing convergence rates of reconstructions.

Corollary 3.2 (Convergence Rates of Reconstructions). Let δ ∈ (0,1), α≥ 1 and ̺ = tanh.

Suppose that (u†, f †) ∈ Hα+2(Ω)×Hα+1(Ω). Set the regularization parameter as λ = O (δ2),

and set U = N̺(LU ,SU ,RU ) and F = N̺(LF ,SF ,RF ), where the hyper-parameters are

given by LU = O (1), SU = O (δ−d/(α−µ)), RU = O (δ−(9d+4+4µ)/(2(α−µ))−2), and LF = O (1),
SF = O (δ−d/(α−µ)), RF = O (δ−(9d+2+4µ)/(2(α−µ))−2). Suppose that the number of samples m

is larger than O (δ−4−c((d+1)/(α−µ)) log(d+2)). Then for τ > 0 with probability at least 1− (13+

7d)τ, the following inequalities hold:



buδλ − u†




H1(Ω)
= O
�
δ log1/4

�
1

δ

��
+ O
�
δ(d+4(α−µ))/(4(α−µ)) log1/4

�
1

τ

��
,



bf δλ − f †




L2(Ω)
= O
�
δ1/2 log1/8

�
1

δ

��
+ O
�
δ(d+4(α−µ))/(8(α−µ)) log1/8

�
1

τ

��
.
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Remark 3.6 (High-Probability Form). For a fixed τ, the last term O (ǫ(d+4(α−µ))/(2(α−µ)))
in Theorem 3.2 is strictly smaller than the first one O (ǫ2). Let ι = log(1/τ), then with

probability 1− (13+7d)exp(ι) the following estimate holds, Lλ(buδλ, bf δ
λ
)≤ O (ǫ2)+O (λ)+

O (δ2) + O (ǫ(d+4(α−µ))/(2(α−µ))ι1/2). This shows the probability that this estimate does not

hold decays exponentially as the last term increases. This analysis also holds for Corol-

lary 3.2.

Remark 3.7 (Overcome CoD Under High-Regularity). In Theorem 3.2 and Corollary 3.2,

for a fixed regularity index α, the number of non-zero weights and the bound of weights

depend exponentially on the dimension d , namely the curse of dimensionality (CoD). How-

ever, if the ground truth (u†, f †) have high-regularity, that is, α = Ω(d), the number of

non-zero weights and the bound of weights could be dimension-independent. It is worth

noting that in the literature, other dimension-free rates are based on the assumption that

the target function is in Barron-type class [20,46,49]. According to [11, (15) in Section IX],

functions with derivatives of sufficiently high order belong to Barron class. More precisely,

if the partial derivatives of g(x) of order α= ⌊d/2⌋+2 are continuous, then g is in Barron

class. In this sense, the analyses we give follow a similar path as previous results in the

literature.

4. Numerical Experiments

In this section, we present numerical reconstructions using method proposed in this pa-

per. The accuracy of reconstructions are measured by the relative L2-errors err(u), err(∂ ju)

and err( f ) defined as

err(u) =
‖u− u†‖2
‖u†‖2

, err(∂ ju) =
‖∂ ju− ∂ ju

†‖2
‖∂ ju

†‖2
, err( f ) =

‖ f − f †‖2
‖ f †‖2

.

Given a ground truth source density f † and a potential function V , the ground truth solu-

tion u† is generated by solving the following elliptic equation with zero Dirichlet boundary

condition:
−∆u+ Vu = f in Ω,

u= 0 on ∂Ω.
(4.1)

Then the boundary flux can obtained by g(x) = ∂nu†(x) for x ∈ ∂Ω. And the noisy mea-

surement data set {(x i, yδ
i

, zδ
i
)}m

i=1
can be generated from (1.2).

All the numerical experiments in this paper have been done on the supercomputing

system with RAM 128GB ECC 2400MHz DDR4, Intel Xeon E5-2640v4 2.4GHz (CPU) and

NVIDIA Tesla V100 16GB NVLink (GPU). The partial differential equation (4.1) is solved

by the PDE toolbox of MATLAB 2023b, and our method was implemented with Python 3.9

on PyTorch 1.13 [54].

We approximate the unknown solution and source density using two neural networks,

both of which have two hidden layers, each layer containing 64 units. In this paper, we use

the Adam [41] optimizer with a learning rate 1.0 × 10−4. We use 100000 sample points

and set the batch size as 2048. In all experiments, we set the number of epochs as 50000.
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In the first test, we consider an elliptic system with an unknown smooth source density.

Example 4.1 (Smooth Source Density). Let Ω= (0,1)2 and V (x) = 1 for each x ∈ Ω. The

ground truth source density f † are given as follows:

φ1(x1, x2) = exp
�
−9× (x1 − 0.3)2 − 25× (x2 − 0.7)2

�
,

φ2(x1, x2) = exp
�
−25× (x1 − 0.7)2 − 9× (x2 − 0.3)2

�
,

f †(x1, x2) = 25φ1(x1, x2) + 36φ2(x1, x2).

The Table 1 presents the relative L2-error of the reconstructions in Example 4.1 for

various noise levels. It is evident from the table that our method maintains a high level of

accuracy even as the noise level increases. Notably, acceptable reconstruction accuracy is

achieved even with noise levels as high as 50%. This observation is further supported by

Fig. 1.

Table 1: The relative L2-error of reconstructions under various noise levels in Example 4.1.

λ= 1.0× 10−8 Noise level δ

0% 1% 10% 20% 50%

err(buδ
λ
) 5.25× 10−4 7.50× 10−4 1.13× 10−3 2.15× 10−3 3.06× 10−3

err(∂1buδλ) 3.50× 10−3 3.90× 10−3 4.15× 10−3 5.42× 10−3 7.50× 10−3

err(∂2buδλ) 3.31× 10−3 3.92× 10−3 3.97× 10−3 5.78× 10−3 7.62× 10−3

err(bf δ
λ
) 1.14× 10−2 1.39× 10−2 1.47× 10−2 1.86× 10−2 2.80× 10−2
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Figure 1: The ground truth source density f † (top), the recovered source density bf δ
λ

(middle), and the
relative point-wise absolute error of the reconstruction |bf δ

λ
− f †|/‖ f †‖∞ (bottom) with regularization

parameter λ= 1.0× 10−8 under different noise levels in Example 4.1.
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Furthermore, both Table 1 and Fig. 2 demonstrate that the reconstructed solution buδ
λ

approximates the ground truth solution u† not only in terms of the L2-norm but also in the

H1-semi-norm. This finding supports our stability estimates (Theorem 2.1) and the analysis

of convergence rates (Corollary 3.2).

To further investigate the impact of explicit regularization on the reconstruction, we

present numerical results with different regularization parameters λ under the noise level

50%, as displayed in Table 2 and Fig. 3. The experimental results illustrate that the re-

Table 2: The relative L2-error of reconstructions with various regularization parameters in Example 4.1.

δ = 50%
Regularization parameters λ

1.0× 10−5 1.0× 10−6 1.0× 10−7 1.0× 10−8 0.0

err(buδ
λ
) 1.10× 10−2 3.63× 10−3 7.96× 10−3 8.77× 10−3 4.78× 10−3

err(∂1buδλ) 2.72× 10−2 7.68× 10−3 6.94× 10−3 7.11× 10−3 7.97× 10−3

err(∂2buδλ) 2.33× 10−2 7.74× 10−3 7.09× 10−3 7.20× 10−3 7.92× 10−3

err(bf δ
λ
) 6.58× 10−2 2.68× 10−2 2.63× 10−2 2.62× 10−2 2.99× 10−2
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Figure 2: The ground truth solution (u†,∂1u†,∂2u†) (top), the recovered solution (buδ
λ
,∂1buδλ,∂2buδλ)

(middle), and the relative point-wise absolute error of the reconstruction (|buδ
λ
− u†|/‖u†‖∞, |∂1buδλ −

∂1u†|/‖∂1u†‖∞, |∂2buδλ − ∂2u†|/‖∂2u†‖∞) (bottom) under the noise level δ = 10% in Example 4.1.
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Figure 3: The ground truth source density f † (top), the recovered source density bf δ
λ

(middle), and
the relative point-wise absolute error of the reconstruction |bf δ

λ
− f †|/‖ f †‖∞ (bottom) under noise level

δ = 50% with different regularization parameters λ in Example 4.1.

construction accuracy is insensitive to the selection of regularization parameter. Notably,

the method exhibits high accuracy within the range of regularization parameters from

1.0× 10−6 to 1.0× 10−8.

The second test consider the non-smooth source density.

Example 4.2 (Non-Smooth Source Density). Let Ω= (0,1)2 and V (x) = 1 for each x ∈ Ω.

The ground truth source density are given as follows:

φ(x1, x2) = exp
�
−16× (x − 0.6)2 − 16.0× (y − 0.4)2

�
,

f †(x1, x2) =






8, φ(x1, x2) ∈ (−∞, 0.25],

32φ(x1, x2), φ(x1, x2) ∈ (0.25,0.75],

24, φ(x1, x2) ∈ (0.75,+∞).

It is worth noting that the ground truth source density in Example 4.2 is not smooth,

which does not align with the conditions outlined in the theoretical results (Theorem 3.2

and Corollary 3.2) presented in Section 3. However, the excellent performance of our

method in non-smooth situations is evident from Table 3 and Fig. 4.

Similar to Example 4.2, our method demonstrates robustness against data noise, as

high reconstruction accuracy is maintained even with noise levels of up to 50%. Further-

more, it is important to note that the reconstructed error is primarily concentrated at the

discontinuities of the source density.
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Table 3: The relative L2-error of reconstructions under various noise levels in Example 4.2.

λ= 1.0× 10−8 Noise level δ

0% 1% 10% 20% 50%

err(buδ
λ
) 2.22× 10−3 1.87× 10−3 2.34× 10−3 3.27× 10−3 4.88× 10−3

err(∂1buδλ) 1.20× 10−2 1.01× 10−2 9.96× 10−3 1.11× 10−2 1.38× 10−2

err(∂2buδλ) 1.02× 10−2 9.35× 10−3 1.18× 10−2 1.33× 10−2 1.70× 10−2

err(bf δ
λ
) 5.71× 10−2 4.96× 10−2 5.41× 10−2 5.90× 10−2 6.95× 10−2
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Figure 4: The ground truth source density f † (top), the recovered source density bf δ
λ

(middle), and the
relative point-wise absolute error of the reconstruction |bf δ

λ
− f †|/‖ f †‖∞ (bottom) under different noise

levels in Example 4.2.

5. Proofs of Lemmas and Theorems

5.1. Proofs of stability estimates

Proof. [Proof of Theorem 2.1] It is obvious from (1.2) and (2.2) that ‖u− u†‖2
H1(Ω)

≤
Lλ(u, f ), which implies the first inequality of stability estimates. We next consider the sta-

bility estimate for the source density. Let ψ ∈ H1(Ω) and (u, f ) ∈ H2(Ω)×H1(Ω). Applying

the trace theorem, we have that ‖Tψ‖L2(∂Ω) ≤ C‖ψ‖H1(Ω) for some positive constant C

only depending on Ω. As a consequence, it follows that

〈 f − f †,ψ〉(H1(Ω))∗,H1(Ω) = ( f − f †,ψ)L2(Ω)

= ( f +∆u− Vu,ψ)L2(Ω) +
�
∆(u† − u),ψ
�

L2(Ω)
+
�
V (u− u†),ψ
�

L2(Ω)

= ( f +∆u− Vu,ψ)L2(Ω) +
�
∇(u− u†),∇ψ
�

L2(Ω)
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+ (g − ∂nu, Tψ)L2(∂Ω) +
�
V (u− u†),ψ
�

L2(Ω)

≤ C
�
‖ f +∆u− Vu‖L2(Ω) + ‖u− u†‖H1(Ω) + ‖∂nu− g‖L2(∂Ω)

�
‖ψ‖H1(Ω),

where C is a positive constant only depending on Ω and ‖V‖L∞(Ω). Here the first equality

holds from (1.1), the second equality used Green’s formula, and the inequality is due to

Cauchy-Schwarz inequality and the trace theorem. Then according to the definition of the

dual norm, we find that

‖ f − f †‖(H1(Ω))∗ ≤ C
�
‖ f +∆u− Vu‖L2(Ω) + ‖u− u†‖H1(Ω) + ‖∂nu− g‖L2(∂Ω)

�

≤ C L
1/2

λ
(u, f ) + 2Cδ,

where the second inequality holds from the triangular inequality and (1.3). On the other

hand, it follows from (2.2) that

‖ f ‖H1(Ω) ≤ λ−1/2 L
1/2

λ
(u, f ).

Then we obtain that

‖ f − f †‖2
L2(Ω)

≤ ‖ f − f †‖H1(Ω)‖ f − f †‖(H1(Ω))∗

≤ C‖ f †‖H1(Ω)

�
1+λ−1/2 L

1/2

λ
(u, f )
��

L
1/2

λ
(u, f ) +δ
�
,

which completes the proof.

5.2. Proof of the oracle inequality

Define the population excess risk of (u, f ) as

Eλ(u, f ) = ‖u− u†‖2
H1(Ω)

+λ‖ f ‖2
H1(Ω)

+ Rint(u, f ) + Rbdy(u).

It is apparent that Lλ(u, f ) = Eλ(u, f ) + 2(1 + d)δ2. For ease of notations, we define the

functional Gλ(·, ·) as

Gλ(u, f ) = λ‖ f ‖2
H1(Ω)

+ Rint(u, f ) + Rbdy(u).

Further, define its empirical counterpart bGλ(u, f ) based on {xΩ
i
}m

i=1
and {x Γ

i
}m

i=1
by

bGλ(u, f ) = λ
|Ω|
m

m∑

i=1

¦
f
�
xΩi

�2
+


∇ f
�
xΩi

�

2
2

©
+ bRint(u, f ) + bRbdy(u).

Throughout this section, we introduce the following notations:

B
(0)
U = sup

u∈U∪{u†}
‖u‖L∞(Ω), B

(0)
F = sup

f ∈F∪{ f †}
‖ f ‖L∞(Ω),

B
(1)
U =max

j∈[d]
sup

u∈U∪{u†}
‖∂ ju‖L∞(Ω), B

(1)
F =max

j∈[d]
sup

f ∈F∪{ f †}
‖∂ j f ‖L∞(Ω),

B
(2)
U =max

j∈[d]
sup

u∈U∪{u†}
‖∂ 2

j ju‖L∞(Ω).

Proof of Theorem 3.1. We divide the rest of the proof into two steps.
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Step 1. Relate the population excess risk with its empirical counterpart. Define a function

φ(0)u for each sample {xΩ
i
}m

i=1
⊆ Ω as

φ(0)u

��
xΩi

	m
i=1

�
= sup

u∈U

�
‖u− yδ‖2

L2(Ω)
− |Ω|

m

m∑

i=1

�
u
�
xΩi

�
− yδ
�
xΩi

��2
�

.

For a point x
Ω,′
k
∈ Ω such that x

Ω,′
k
6= xΩ

k
, we have

φ(0)
u

��
xΩ

i

	m
i=1

�
−φ(0)

u

��
xΩ

i

	k−1

i=1
∪
�

x
Ω,′
k

	
∪
�

xΩ
i

	m
i=k+1

�

≤ sup
u∈U

� |Ω|
m

�
u
�
xΩ

k

�
− yδ
�
xΩ

k

��2
− |Ω|

m

�
u
�
x
Ω,′
k

�
− yδ
�
x
Ω,′
k

��2�
≤ 4|Ω|

m

�
B
(0)
U +δ
�2

,

then it follows from McDiarmid’s inequality (Lemma A.1) that for each τ ∈ (0,1), the

following inequality holds with probability at least 1−τ:

φ(0)u

��
xΩi

	m
i=1

�
≤ E{xi}mi=1

�
φ(0)u

��
xΩi

	m
i=1

� �
+ 4|Ω|
�
B
(0)
U +δ
�2
√√ log(1/τ)

2m
. (5.1)

We next bound the expectation in the right-hand side by the technique of symmetrization.

Let { x̃Ω
i
}m

i=1
be a set of independent copies of xΩ and be independent of {xΩ

i
}m

i=1
. Further,

suppose that {σi}mi=1
is a set of i.i.d. Rademacher variables independent of {xΩ

i
}m

i=1
and

{ x̃Ω
i
}m

i=1
. Then it follows from Jensen’s inequality that

E{xΩ
i
}m

i=1
sup
u∈U

�
ExΩ

��
u(xΩ)− yδ(xΩ)

�2�− 1

m

m∑

i=1

�
u
�
xΩi

�
− yδ
�
xΩi

��2
�

= E{xΩ
i
}m

i=1
sup
u∈U

�
E{ x̃i}mi=1

1

m

m∑

i=1

�
u
�
x̃Ω

i

�
− yδ
�
x̃Ω

i

��2
− 1

m

m∑

i=1

�
u
�
xΩ

i

�
− yδ
�
xΩ

i

��2
�

≤ E{xΩ
i

, x̃Ω
i
}m

i=1
sup
u∈U

�
1

m

m∑

i=1

�
u
�
x̃Ωi

�
− yδ
�
x̃Ωi

��2
−
�
u
�
xΩi

�
− yδ
�
xΩi

��2
�

= E{xΩ
i

, x̃Ω
i

,σi}mi=1
sup
u∈U

�
1

m

m∑

i=1

σi

��
u
�
x̃Ωi

�
− yδ
�
x̃Ωi

��2
−
�
u
�
xΩi

�
− yδ
�
xΩi

��2�
�

= 2E{xΩ
i

,σi}mi=1
sup
u∈U

�
1

m

m∑

i=1

σi

�
u
�
xΩ

i

�
− yδ
�
xΩ

i

��2
�

= 2Rm

��
x 7→
�
u(x)− yδ(x)
�2

: x ∈ Ω,u ∈ U
	�

.

Combining this with Ledoux-Talagrand contraction inequality (Lemma A.3), we have

E{xΩ
i
}m

i=1

�
φ(0)u

��
xΩi

	m
i=1

��
≤ 8|Ω|
�
B
(0)
U +δ
�
Rm(U − yδ) = 8|Ω|

�
B
(0)
U +δ
�
Rm(U ). (5.2)
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Notice that changing one point on {xΩ
i
}m

i=1
changes ÒR{xΩ

i
}m

i=1
(U ) by at most 2B

(0)
U /m, that

is, for each k ∈ [m]
ÒR{xΩ

i
}m

i=1
(U )−ÒR{xΩ

i
}k−1

i=1
∪{xΩ,′

k
}∪{xΩ

i
}m

i=k+1
(U )

≤ Eσk

�
sup
u∈U

�
1

m
σku
�
xΩ

k

�
− 1

m
σiu
�
x
Ω,′
k

���
≤ 2

m
B
(0)
U .

Then according to McDiarmid’s inequality (Lemma A.1), with probability at least 1−τ the

following holds:

Rm(U ) ≤ ÒR{xΩ
i
}m

i=1
(U ) + 2B

(0)
U

√√ log(1/τ)

2m
. (5.3)

According to (5.1) to (5.3), for each τ ∈ (0,1), the following inequality holds with proba-

bility at least 1− 2τ:

φ(0)u

��
xΩi

	m
i=1

�
≤ 8|Ω|
�
B
(0)
U +δ
�
ÒR{xΩ

i
}m

i=1
(U ) + 20|Ω|
�
B
(0)
U +δ
�2
√√ log(1/τ)

2m
. (5.4)

By the same arguments, we have that the following inequality holds with probability at

least 1− 2τ:



∂ ju− zδj



2
L2(Ω)

− |Ω|
m

m∑

i=1

�
∂ ju
�
xΩi

�
− zδj

�
xΩi

��2

≤ 8|Ω|
�
B
(1)
U +δ
�
ÒR{xΩ

i
}m

i=1
(∂ jU ) + 20|Ω|
�
B
(1)
U +δ
�2
√√ log(1/τ)

2m
.

Then summarizing with respect to j ∈ [d] and using (5.4) yield that the following holds

with probability at least 1− 2(1+ d)τ:
�
‖u− yδ‖2

L2(Ω)
− ‖∇u− zδ‖2

L2(Ω)

�

− |Ω|
m

m∑

i=1

��
u
�
xΩi

�
− yδ
�
xΩi

��2
+


∇u
�
xΩi

�
− zδ
�
xΩi

�

2
2

�

≤ 8|Ω|
§�

B
(0)
U +δ
�
ÒR{xΩ

i
}m

i=1
(U ) + d
�
B
(1)
U +δ
�

max
j∈[d]
ÒR{xΩ

i
}m

i=1
(∂ jU )
ª

+ 20|Ω|
n�

B
(0)
U +δ
�2
+ d
�
B
(1)
U +δ
�2o
√√ log(1/τ)

2m
. (5.5)

In order to estimate the generalization error corresponding to the regularization term, we

define functions φ
(0)

f
,φ
(1)

f
: Ωm→ R as

φ
(0)

f

��
xΩi

	m
i=1

�
= sup

f ∈F

�
‖ f ‖2

L2(Ω)
− |Ω|

m

m∑

i=1

f
�
xΩi

�2
�

,

φ
(1)

f

��
xΩ

i

	m
i=1

�
= sup

f ∈F

�
‖∂ j f ‖2

L2(Ω)
− |Ω|

m

m∑

i=1

∂ j f
�
xΩ

i

�2
�

,
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and notice that

φ
(0)

f

��
xΩi

	m
i=1

�
−φ(0)

f

��
xΩi

	k−1

i=1
∪
�

x
Ω,′
k

	
∪
�

xΩi

	m
i=k+1

�
≤ |Ω|

m

�
B
(0)
F
�2

,

φ
(1)

f

��
xΩi

	m
i=1

�
−φ(1)

f

��
xΩi

	k−1

i=1
∪
�

x
Ω,′
k

	
∪
�

xΩi

	m
i=k+1

�
≤ |Ω|

m

�
B
(1)
F
�2

.

As a consequent, we have that for each τ ∈ (0,1), the following inequality holds from

McDiarmid’s inequality (Lemma A.1) with probability at least 1−τ:

φ
(0)

f

��
xΩi

	m
i=1

�
≤ E{xΩ

i
}m

i=1

�
φ
(0)

f

��
xΩi

	m
i=1

��
+ |Ω|
�
B
(0)
F
�2
√√ log(1/τ)

2m
, (5.6)

φ
(1)

f

��
xΩ

i

	m
i=1

�
≤ E{xΩ

i
}m

i=1

�
φ
(1)

f

��
xΩ

i

	m
i=1

��
+ |Ω|
�
B
(1)
F
�2
√√ log(1/τ)

2m
. (5.7)

Moreover, it follows from the technique of symmetrization that

E{xΩ
i
}m

i=1

�
φ
(0)

f

��
xΩ

i

	m
i=1

��
≤ 2|Ω|Rm

��
x 7→ f (x)2 : x ∈ Ω, f ∈ F

	�
≤ 4|Ω|B(0)F Rm(F ),

E{xΩ
i
}m

i=1

�
φ
(1)

f

��
xΩi

	m
i=1

��
≤ 2|Ω|Rm

��
x 7→ ∂ j f (x)2 : x ∈ Ω, f ∈ F

	�
≤ 4|Ω|B(1)F Rm(∂ jF ),

where ∂ jF = {x 7→ ∂ j f (x) : x ∈ Ω, f ∈ F} and we used Ledoux-Talagrand contraction

inequality (Lemma A.3). By combing above two inequalities with (5.6)-(5.7) and using

McDiarmid’s inequality (Lemma A.1) like (5.3), for each τ ∈ (0,1), the following inequality

holds with probability at least 1− 2(1+ d)τ:

‖ f ‖2
H1(Ω)

− |Ω|
m

m∑

i=1

¦
f
�
xΩi

�2
+


∇ f
�
xΩi

�

2
2

©

≤ 4|Ω|
§

B
(0)
F ÒR{xΩi }mi=1

(F ) + dB
(1)
F max

j∈[d]
ÒR{xΩ

i
}m

i=1
(∂ jF )
ª

+ 9|Ω|
n�

B
(0)
F
�2
+ d
�
B
(1)
F
�2o
√√ log(1/τ)

2m
. (5.8)

It remains to investigate two physics-informed terms. Define a function φint : Ωm→ R by

φint

��
xΩi

	m
i=1

�
= sup
(u, f )∈U×F

�
Rint(u, f )− bRint(u, f )

�
.

Denote by V̄ = ‖V‖L∞(Ω). It is straightforward to verify that

φint

��
xΩi

	m
i=1

�
−φint

��
xΩi

	k−1

i=1
∪
�

x
Ω,′
k

	
∪
�

xΩi

	m
i=k+1

�
≤ |Ω|

m

�
B
(0)
F + dB

(2)
U + V̄ B

(0)
U
�2

,

which implies from McDiarmid’s inequality (Lemma A.1) that for each τ ∈ (0,1), the fol-

lowing inequality holds with probability at least 1−τ:

φint

��
xΩi

	m
i=1

�
≤ E{xΩ

i
}m

i=1

�
φint

��
xΩi

	m
i=1

� �
+ |Ω|
�
B
(0)
F + dB

(2)
U + V̄ B

(0)
U
�2
√√ log(1/τ)

2m
. (5.9)
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Denote h(x) = f (x) +∆u(x)− V (x)u(x). Then Rint(u, f ) = E[h(x)]. By the similar argu-

ment mentioned above, we have that

E{xΩ
i
}m

i=1
sup

(u, f )∈U×F

�
ExΩ

�
h(xΩ)2
�
− 1

m

m∑

i=1

h
�
xΩi

�2
�

≤ E{xΩ
i

, x̃Ω
i
}m

i=1
sup

(u, f )∈U×F

�
1

m

m∑

i=1

h
�
x̃Ω

i

�2 − 1

m

m∑

i=1

h
�
xΩ

i

�2
�

= E{xΩ
i

, x̃Ω
i

,σi}mi=1
sup

(u, f )∈U×F

�
1

m

m∑

i=1

σi

�
h
�
x̃Ωi

�2 − h
�
xΩi

�2�
�

= 2Rm

��
x 7→ h(x)2 =
�

f (x) +∆u(x)− V (x)u(x)
�2

: x ∈ Ω,u ∈ U , f ∈ F
	�

≤ 4
�
B
(0)
F + dB

(2)
U + V̄ B

(0)
U
�¦

Rm(F ) + d max
j∈[d]

Rm

�
∂ 2

j jU
�
+ V̄Rm(U )
©

,

where

∂ 2
j j
U =
¦

x 7→ ∂ 2
j j

u(x) : x ∈ Ω,u ∈ U
©

.

Using McDiarmid’s inequality (Lemma A.1), we have that the following inequalities hold

with probability at least 1−τ:

Rm

�
∂ 2

j jU
�
≤ ÒR{xΩ

i
}m

i=1

�
∂ 2

j jU
�
+ 2B

(2)
U

√√ log(1/τ)

2m
. (5.10)

Combining (5.9) with (5.10), we have that for each τ ∈ (0,1), the following inequality

holds with probability at least 1− (3+ d)τ:

Rint(u, f )− bRint(u, f )

≤ 4|Ω|
�
B
(0)
F + dB

(2)
U + V̄ B

(0)
U
�¦
ÒR{xΩ

i
}m

i=1
(F ) + d max

j∈[d]
ÒR{xΩ

i
}m

i=1

�
∂ 2

j j
U
�
+ V̄ÒR{xΩ

i
}m

i=1
(U )
©

+ 9|Ω|
�
B
(0)
F + dB

(2)
U + V̄ B

(0)
U
�2
√√ log(1/τ)

2m
. (5.11)

Define a function φbdy : (∂Ω)m→ R by

φbdy

��
x Γ

i

	m
i=1

�
= sup

u∈U

�
‖∂nu− g‖2

L2(∂Ω)
− |∂Ω|

m

m∑

i=1

�
∂nu(x Γ

i
)
�
− g
�
x Γ

i

�2
�

.

Denote ḡ = ‖g‖L∞(∂Ω). It is apparent that

φbdy

��
x Γi

	m
i=1

�
−φbdy

��
x Γi

	k−1

i=1
∪
�

x
Γ ,′
k

	
∪
�

x Γi

	m
i=k+1

�
≤ |∂Ω|

m

�p
dB
(1)
U + ḡ
�2

,

consequently, for each τ ∈ (0,1), the following holds from McDiarmid’s inequality (Lem-

ma A.1) with probability at least 1− τ:

φbdy

��
x Γi

	m
i=1

�
≤ E{xΓ

i
}m

i=1

�
φbdy

��
x Γi

	m
i=1

� �
+ |∂Ω|
�p

dB
(1)
U + ḡ
�2
√√ log(1/τ)

2m
. (5.12)
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On the other hand, we find that the following inequality holds with probability at least

1−τ:

E{xΓ
i
}m

i=1

�
φbdy

��
x Γ

i

	m
i=1

� �

≤ 2|∂Ω|Rm

��
x 7→
�
∂nu(x)− g(x)
�2

: x ∈ ∂Ω,u ∈ U
	�

≤ 4|∂Ω|
�p

dB
(1)
U + ḡ
�
Rm(∂nU )

≤ 4|∂Ω|
�p

dB
(1)
U + ḡ
�
ÒR{xΓ

i
}m

i=1
(∂nU ) + 8|∂Ω|

�p
dB
(1)
U + ḡ
�2
√√ log(1/τ)

2m
,

where

∂nU =
�

x 7→ ∂nu(x) : x ∈ ∂Ω,u ∈ U
	
,

TU =
�

x 7→ Tu(x) : x ∈ ∂Ω,u ∈ U
	
.

Combining this with (5.12) gives that for each τ ∈ (0,1) the following inequality holds

with probability at least 1−τ:

Rbdy(u)− bRbdy(u) ≤ 4|∂Ω|
�p

dB
(1)
U + ḡ
�
ÒR{xΓ

i
}m

i=1
(∂nU )

+ 9|∂Ω|
�p

dB
(1)
U + ḡ
�2
√√ log(1/τ)

2m
. (5.13)

By using (5.5), (5.8), (5.11) and (5.13), we have that for each τ ∈ (0,1), the following

holds with probability at least 1− (9+ 5d)τ:

Lλ
�
buδλ, bf δλ
�
≤ inf
(ū, f̄ )∈U×F

Lλ(ū, f̄ ) + CEgen(U ,F , n)

≤ inf
(ū, f̄ )∈U×F

Eλ(ū, f̄ ) + 2(1+ d)δ2 + CEgen(U ,F , n). (5.14)

Step 2. Approximation error. In this part, we will prove the following inequality:

inf
(ū, f̄ )∈U×F

Eλ(ū, f̄ ) ≤ C inf
u∈U
‖u−u†‖2

H2(Ω)
+(1+2λ) inf

f ∈F
‖ f − f †‖2

H1(Ω)
+2λ‖ f †‖2

H1(Ω)
, (5.15)

combining which with (5.14) yields the desired result. Since (u†, f †) satisfies (1.1), it

follows that

Rint(u, f ) =


( f − f †) +∆(u− u†)− V (u− u†)



2
L2(Ω)

≤ ‖ f − f †‖2
L2(Ω)

+ (1+ V̄ )‖u− u†‖H2(Ω),

and using the trace theorem gives that

Rbdy(u, f ) = ‖∂n(u− u†)‖L2(∂Ω) ≤ C‖u− u†‖2
H1(Ω)

,

where C is a constant only depending on Ω. On the other hand, we have that ‖ f ‖H1(Ω) ≤
‖ f − f †‖H1(Ω)+‖ f †‖H1(Ω). Combining this with above two inequalities and taking infimum

with respect to (ū, f̄ ) ∈ U ×F implies (5.15). This completes the proof.
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5.3. Proof of convergence rates

The proof of [15, Lemma 3.6].

Lemma 5.1. Let ̺ = tanh and G =N̺(L,S,R). Then it follows that

B
(0)
G ≤ RS, B

(1)
G ≤ RLSL , B

(0)
G ≤ 2R2LS2L,

and

sup
x∈X

��g(x ,θ)− g(x ;θ ′)
�� ≤ κ(0)‖θ − θ ′‖∞,

sup
x∈X

max
j∈[d]

��∂ j g(x ,θ)− ∂ j g(x ;θ ′)
�� ≤ κ(1)‖θ − θ ′‖∞,

sup
x∈X

max
j∈[d]

��∂ 2
j j g(x ,θ)− ∂ 2

j j g(x ;θ ′)
�� ≤ κ(2)‖θ − θ ′‖∞,

where κ(0) = RLSL,κ(1) = 2R2LS2L and κ(2) = 10R3LS3L .

Proof of Lemma 3.1. A direct conclusion of Lemma 5.1.

Proof of Lemma 3.2. We first consider the Rademacher complexity of the function

class U . According to Lemma A.6, we have that

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(U )≤ ε+ B

(0)
U

√√2H(ε,U , L∞(Ω))
m

≤ ε+ B
(0)
U

√√√2H(ε/κ
(0)
U ,Θ,ℓ∞)

m

≤ ε+ B
(0)
U

√√√2SU log(3RUκ
(0)
U /ε)

m
,

where the second inequality is due to Lemma A.7 and the last one holds from Lemma A.8.

Combining this with Lemma 5.1 and setting ε = B
(0)
U /
p

m yield

sup
{xΩ

i
}m

i=1

ÒR{xΩ
i
}m

i=1
(U )≤ 3SURU

√√SU (LU log(SU RU ) + log m)

m
.

By a same argument, we can obtain Rademacher complexities of other function classes. One

more thing we need to note is that for each fixed {x Γ
i
}m

i=1
, it holds from Cauchy-Scharwz

inequality that

ÒR{xΓ
i
}m

i=1
(∂nU )≤ ‖n‖1 max

j∈[d]
ÒR{xΓ

i
}m

i=1
(∂ jU ) ≤
p

dÒR{xΓ
i
}m

i=1
(∂ jU ).

This completes the proof.
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Proof of Theorem 3.2. According to Lemma 1.1, it holds that

inf
u∈U
‖u− u†‖H2(Ω) ≤ |Ω|‖u†‖2

Hα+2(Ω)
ǫ2,

inf
f ∈F
‖ f − f †‖H1(Ω) ≤ |Ω|‖ f †‖2

Hα+1(Ω)
ǫ2,

(5.16)

where

U =N̺(LU ,SU ,RU ) and F =N̺(LF ,SF ,RF )

with

LU = c log(d + 2), SU = Cǫ−d/(α−µ), RU = Cǫ−(9d+4+4µ)/(2(α−µ))−2,

LF = c log(d + 1), SF = Cǫ−d/(α−µ), RF = Cǫ−(9d+2+4µ)/(2(α−µ))−2.
(5.17)

Here c,µ > 0 are absolute constants and the constant C depends on α, d ,Ω and µ. On the

other hand, we find from Lemma 3.1, 3.2 and Corollary 3.1 that

Egen(U ,F , m) ≤ C
¦

R4L
U S4L
U + R2L

F S2L
F +δ

2(log m)2
©√√

SU LU log(SU RU )
log m

m

+ C
¦

R4L
U S4L
U + R2L

F S2L
F +δ

2(log m)2
©√√

SF LF log(SFRF )
log m

m

+ C
¦

R4L
U S4L
U + R2L

F S2L
F +δ

2
©√√ log(1/τ)

2m
, (5.18)

where C is a positive constant only depending on d ,Ω, ‖V‖L∞(Ω) and ‖g‖L∞(∂Ω). Plugging

(5.17) in (5.18) yields that

Egen(U ,F , m) ≤ C
¦
ǫ−c((d+1)/(α−µ)) log(d+2) +δ2(log m)2

©

×
�
ǫ−d/(2(α−µ))
√√ log m

m
+

√√ log(1/τ)

2m

�
. (5.19)

Combining (5.16) with (5.19) yields the desired result.

6. Conclusions and Discussions

We have proposed a method based on Physics-Informed Neural Networks (PINNs) for

identifying sources in elliptic equations. By employing neural networks to approximate

the unknown source term and solution, and minimizing the empirical risk using a stochas-

tic gradient descent (SGD)-type algorithm, we are able to recover the source density and

solution. To assess the effectiveness of our method experimentally, we apply it to vari-

ous examples with different noise levels and regularization parameters. These experiments

highlight the remarkable robustness of our method when encountering data noise. Further-

more, we provide theoretical analysis by presenting convergence rates of the reconstruction
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in relation to the noise level. This analysis yields valuable insights a priori for determining

appropriate choices for regularization parameters, the number of samples, and the size of

the neural networks.

The proposed method is applicable to high-dimensional problems and can be integrated

with adaptive sampling methods, as described in [33]. Moreover, the approach of combin-

ing Tikhonov regularization with PINNs can be extended to address parameter identifica-

tion problems involving partial differential equations other than the one considered in this

study. The analytical strategies developed in this work hold great promise for establishing

convergence rates in future investigations of various inverse problems.

Appendix A. Supplementary Definitions and Lemmas

Definition A.1 (Gaussian Complexity). Let X ⊆ Rd (d ≥ 1) be a bounded domain and let

µ be a measure on X . Suppose that G is a family of functions mapping from X to R and

{x i}mi=1
is a set of samples i.i.d. drawn from µ. Let σ = {σi}mi=1

be a set of i.i.d. standard

Gaussian variables and independent of {x i}mi=1
. Then the empirical Gaussian complexity of G

with respect to the sample set {x i}mi=1
is defined as

ÒG{xi}mi=1
(G ) = Eσ
�

sup
g∈G

1

m

m∑

i=1

σi g(x i)

�
,

where Eσ[·] = E[·|{x i}mi=1
].

Definition A.2 (Covering Number and Metric Entropy). Let (H ,ρ(·, ·)) be a pseudo-metric

space and G ⊆H . A set Gε ⊆H is called a ρ(·, ·) ε-cover of G if for each g ∈ G , there exists

gε ∈ Gε, such that ρ(g, gε)≤ ε. Then the ε-covering number of G is defined by

N
�
ε,G ,ρ(·, ·)
�
=min
�
|Gε| : Gε is a ρ(·, ·) τ-cover of G

	
.

Moreover, the ρ(·, ·) ε-metric entropy of G is defined by H(ε,G ,ρ(·, ·)) = log N (ε,G ,ρ(·, ·)).

Lemma A.1 (McDiarmid’s Inequality, cf. Mohri & Rostamizadeh [51, Theorem D.8]). Let

{x i}mi=1
⊆ X be a set of m independent random variables and assume that there exists {ci}mi=1

⊆
R+ such that g :X m→ R satisfies the following condition:

| f (z1, . . . , zk, . . . , zm)− f (z1, . . . , z′k, . . . , zm)| ≤ ci ,

for each k ∈ [m] and each points z1, . . . , zm, z′
k
∈ X . Then for each δ > 0, the following

inequalities hold:

Pr
�

f (x1, . . . , xm)−E[ f (x1, . . . , xm)] ≥ δ
�
≤ exp

�
− 2δ2

∑m
i=1 c2

i

�
,

Pr
�

f (x1, . . . , xm)−E[ f (x1, . . . , xm)] ≤ −δ
�
≤ exp

�
− 2δ2

∑m
i=1 c2

i

�
.
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Lemma A.2 (cf. Giné & Nickl [23, Theorem 2.1.20]). Let {X t : t ∈ T} be a separable centred

Gaussian process such that Pr(supt∈T |X t | <∞) > 0. Then σ := supt∈T (EX 2
t )

1/2 <∞ and

E[supt∈T |X t |] <∞. Furthermore, the following inequality holds:

Pr

��� sup
t∈T
|X t | −E[sup

t∈T
|X t |]
��> δ
�
≤ 2 exp

�
− δ

2

2σ2

�
.

Lemma A.3 (Ledoux-Talagrand Contraction Inequality, cf. Mohri & Rostamizadeh [51,

Lemma 5.7]). Let {φi}mi=1
be m L-Lipschitz functions fromR toR, and {σi}mi=1

be Rademacher

random variables. Then for any hypothesis set G of real-valued functions, the following in-

equality holds:

E{σi}mi=1

�
sup
g∈G

1

m

m∑

i=1

σiφi ◦ g(x i)

�
≤ LE{σi}mi=1

�
sup
g∈G

1

m

m∑

i=1

σi g(x i)

�
= LÒR{xi}mi=1

(G ).

Lemma A.4 (cf. Bartlett & Mendelson [12, Lemma 1]). Let X ⊆ Rd and {x i}mi=1
⊆ X .

Let G be a finite set of functions mapping from X to R. Then it follows that ÒG{xi}mi=1
(G ) ≤

2
p

log mÒR{xi}mi=1
(G ).

Lemma A.5 (Massart’s Lemma, cf. Mohri & Rostamizadeh [51, Theorem 3.7]). LetX ⊆ Rd

and {x i}mi=1
⊆ X . Let G be a finite set of functions mapping from X to R. Suppose that

‖g‖L∞(X ) ≤ BG for each g ∈ G . Then it follows that

ÒR{xi}mi=1
(G ) ≤ BG

√√2 log |G |
m

.

Lemma A.6 (Dudley Inequality). Let X ⊆ Rd and {x i}mi=1
⊆ X . Let G be a set of functions

mapping from X to R. Suppose that ‖g‖L∞(X ) ≤ BG for each g ∈ G . Then it follows that

ÒR{xi}mi=1
(G ) ≤ ε+ BG

√√2H(ε,G , L∞(X ))
m

.

Proof. Let Gε be an L∞(X ) ε-cover of G , that is, for each g ∈ G , there exists gε ∈ Gε,
such that ‖g−gε‖L∞(X ) ≤ ε. Further, suppose that |Gε| = N (ε,G , L∞(X )). Then it follows

from the convexity of suprema that

ÒR{xi}mi=1
(G ) ≤ Eσ
�

sup
g∈G

1

m

m∑

i=1

σi

�
g(x i)− gε(x i)
�
�
+Eσ

�
sup

gε∈Gε

1

m

m∑

i=1

σi gε(x i)

�

≤ ε+ÒR{xi}mi=1
(Gǫ),

where the last inequality holds from Hölder’s inequality. According to Massart’s lemma

(Lemma A.5), we completes the proof.

The following lemma shows that the covering numbers of parameterized classes of func-

tions that are Lipschitz in the parameter can be controlled by the covering numbers of the

parameter space.
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Lemma A.7 (Metric Entropy of Parametric Classes). Let G be a parameterized class of func-

tions, that is, G = {x 7→ g(x ;θ) : x ∈ X ,θ ∈ Θ}. Suppose that there exists a positive constant

κ, such that |g(x ;θ)− g(x ;θ ′)| ≤ κ‖θ − θ ′‖∞. Then it follows that

H
�
ε,G , L∞(X )
�
≤ H(ε/κ,Θ,ℓ∞).

Proof. Let Θδ be an ℓ∞ δ-cover of Θ with |Θδ| = N (δ,Θ,ℓ∞). Then for each θ ∈ Θ,

there exists θδ ∈ Θδ such that ‖θ − θδ‖∞ ≤ δ. Denote by Gδ = {x 7→ g(x ;θ) : x ∈ X ,θ ∈
Θδ}. It is apparent that |Gδ| = |Θδ|. Then for each θ ∈ Θ, there exists θδ ∈ Θδ, such that

|g(x ;θ)− g(x ;θδ)| ≤ κδ,

which means that Gδ is an L∞(X ) κδ-cover of G , and thus N (κδ,G , L∞(X )) ≤ |Gδ|.
Setting ε = κδ and taking logarithm on both sides of the inequality yields the desired

result.

Lemma A.8 (Metric Entropy of Finite-Dimensional Norm-Balls, [59, Lemma 5.7]). Let BR

be a ball with respect to the metric ‖ · ‖ with radius R, that is, BR = {x ∈ RS : ‖x‖ ≤ R}. Then

it holds that H(ε, BR,‖ · ‖)≤ S log(3R/ǫ).

Acknowledgments

This work is supported by the National Key Research and Development Program of

China (Grant No. 2020YFA0714200), by the National Nature Science Foundation of China

(Grant Nos. 12125103, 12071362, 12371441), and by the Fundamental Research Funds

for the Central Universities. The numerical calculations in this paper have been done on

the supercomputing system in the Supercomputing Center of Wuhan University.

References

[1] V. Akcelik, G. Biros, O. Ghattas, K.R. Long and B. van Bloemen Waanders, A variational finite

element method for source inversion for convective-diffusive transport, Finite Elem. Anal. Des.

39, 683–705 (2003).

[2] M.A. Anastasio, J. Zhang, D. Modgil and P.J.L. Rivière, Application of inverse source concepts

to photoacoustic tomography, Inverse Problems 23, S21 (2007).

[3] M. Anthony and P.L. Bartlett, Neural Network Learning: Theoretical Foundations, Cambridge

University Press (1999).

[4] J. Atmadja and A.C. Bagtzoglou, State of the art report on mathematical methods for ground-

water pollution source identification, Environ. Forensics 2, 205–214 (2001).

[5] A.E. Badia and T. Ha-Duong, On an inverse source problem for the heat equation. Application

to a pollution detection problem, J. Inverse Ill-Posed Probl. 10, 585–599 (2002).

[6] A.E. Badia and A.E. Hajj, Identification of dislocations in materials from boundary measure-

ments, SIAM J. Appl. Math. 73, 84–103 (2013).

[7] A.E. Badia, A.E. Hajj, M. Jazar and H. Moustafa, Lipschitz stability estimates for an inverse



Recovering the Source Term in Elliptic Equation via Deep Learning 487

source problem in an elliptic equation from interior measurements, Appl. Anal. 95, 1873–1890

(2016).

[8] A.E. Badia and T. Nara, An inverse source problem for Helmholtz’s equation from the Cauchy

data with a single wave number, Inverse Problems 27, 105001 (2011).

[9] G. Bao, X. Ye, Y. Zang and H. Zhou, Numerical solution of inverse problems by weak adversarial

networks, Inverse Problems 36, 115003 (2020).

[10] M. Barati Moghaddam, M. Mazaheri and J. Mohammad Vali Samani, Inverse modeling of con-

taminant transport for pollution source identification in surface and groundwaters: A review,

Groundwater Sustainable Dev. 15, 100651 (2021).

[11] A. Barron, Universal approximation bounds for superpositions of a sigmoidal function, IEEE

Trans. Inform. Theory 39, 930–945 (1993).

[12] P. L. Bartlett and S. Mendelson, Rademacher and Gaussian complexities: Risk bounds and struc-

tural results, J. Mach. Learn. Res. 3, 463–482 (2003).

[13] B. Bauer and M. Kohler, On deep learning as a remedy for the curse of dimensionality in non-

parametric regression, Ann. Statist. 47, 2261–2285 (2019).

[14] M. Benning and M. Burger, Modern regularization methods for inverse problems, Acta Numer.

27, 1–111 (2018).

[15] S. Cen, B. Jin, Q. Quan and Z. Zhou, Hybrid neural-network FEM approximation of diffusion

coefficient in elliptic and parabolic problems, IMA J. Numer. Anal., drad073 (2023).

[16] M. Chen, H. Jiang, W. Liao and T. Zhao, Nonparametric regression on low-dimensional manifolds

using deep ReLU networks: Function approximation and statistical recovery, Inf. Inference 11,

1203–1253 (2022).

[17] A.R. Costall, B.D. Harris, B. Teo, R. Schaa, F.M. Wagner and J.P. Pigois, Groundwater through-

flow and seawater intrusion in high quality coastal aquifers, Sci. Rep. 10, (2020).

[18] Z. Ding, C. Duan, Y. Jiao and J.Z. Yang, Semi-supervised deep Sobolev regression: Estimation,

variable selection and beyond, arXiv:2401.04535 (2024).

[19] C. Duan, Y. Jiao, X. Lu and J.Z. Yang, Current density impedance imaging with PINNs,

arXiv:2306.13881 (2023).

[20] W. E, C. Ma and L. Wu, The Barron space and the flow-induced function spaces for neural network

models, Constr. Approx. 55, 369–406 (2022).

[21] H.W. Engl, M. Hanke and A. Neubauer, Regularization of Inverse Problems, Mathematics and

Its Applications, 375, Springer Dordrecht (2000).

[22] M.H. Farrell, T. Liang and S. Misra, Deep neural networks for estimation and inference, Econo-

metrica 89, 181–213 (2021).

[23] E. Giné and R. Nickl, Mathematical Foundations of Infinite-Dimensional Statistical Models, Cam-

bridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press (2015).

[24] I. Gühring and M. Raslan, Approximation rates for neural networks with encodable weights in

smoothness spaces, Neural Networks 134, 107–130 (2021).

[25] L. Guo, H. Wu, X. Yu and T. Zhou, Monte Carlo fPINNs: Deep learning method for forward and

inverse problems involving high dimensional fractional partial differential equations, Comput.

Methods Appl. Mech. Engrg. 400, 115523 (2022).

[26] M. Hämäläinen, R. Hari, R.J. Ilmoniemi, J. Knuutila and O.V. Lounasmaa, Magnetoencephalog-

raphy – Theory, instrumentation, and applications to noninvasive studies of the working human

brain, Rev. Mod. Phys. 65, 413–497 (1993).

[27] A. Hamdi, Identification of a time-varying point source in a system of two coupled linear diffusion-

advection-reaction equations: Application to surface water pollution, Inverse Problems 25,

115009 (2009).

[28] Q. Hu, S. Shu and J. Zou, A new variational approach for inverse source problems, Numer. Math.



488 C. Duan, Y. Jiao, J.-Z. Yang and P. Zhang

Theory Methods Appl. 12, 331–347 (2018).

[29] V. Isakov, Inverse Problems for Partial Differential Equations, Applied Mathematical Sciences,

Vol. 127, (2018).

[30] K. Ito and B. Jin, Inverse Problems: Tikhonov Theory and Algorithms, World Scientific (2014).

[31] Y. Jiao, Y. Lai, D. Li, X. Lu, F. Wang, Y. Wang and J.Z. Yang, A rate of convergence of physics

informed neural networks for the linear second order elliptic PDEs, Commun. Comput. Phys. 31,

1272–1295 (2022).

[32] Y. Jiao, Y. Lai, Y. Lo, Y. Wang and Y. Yang, Error analysis of deep Ritz methods for elliptic equa-

tions, Anal. Appl. (Singap.) 22(1), 57–87 (2024).

[33] Y. Jiao, D. Li, X. Lu, J.Z. Yang and C. Yuan, GAS: A Gaussian mixture distribution-based adaptive

sampling method for PINNs, arXiv:2303.15849 (2023).

[34] Y. Jiao, G. Shen, Y. Lin and J. Huang, Deep nonparametric regression on approximate manifolds:

Nonasymptotic error bounds with polynomial prefactors, Ann. Statist. 51, 691–716 (2023).

[35] B. Jin, X. Li and X. Lu, Imaging conductivity from current density magnitude using neural net-

works, Inverse Problems 38, 075003 (2022).

[36] B. Jin, X. Li, Q. Quan and Z. Zhou, Conductivity imaging from internal measurements with

mixed least-squares deep neural networks, SIAM J. Imaging Sci. 17, 147–187 (2024).

[37] B. Jin, R. Sau, L. Yin and Z. Zhou, Solving elliptic optimal control problems using physics in-

formed neural networks, arXiv:2308.11925 (2023).

[38] K. Kaiboriboon, H.O. Lüders, M. Hamaneh, J. Turnbull and S.D. Lhatoo, EEG source imaging

in epilepsy-practicalities and pitfalls, Nat. Rev. Neurol. 8, 498–507 (2012).

[39] Y.L. Keung and J. Zou, Numerical identifications of parameters in parabolic systems, Inverse

Problems 14, 83 (1998).

[40] Y.L. Keung and J. Zou, An efficient linear solver for nonlinear parameter identification problems,

SIAM J. Sci. Comput. 22, 1511–1526 (2001).

[41] D.P. Kingma and J. Ba, Adam: A method for stochastic optimization, in: 3rd International Con-

ference on Learning Representations, ICLR 2015, Y. Bengio and Y. LeCun (Eds), Conference

Track Proceedings (2015).
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