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Abstract. Inference-time alignment for diffusion models aims to adapt a pre-trained reference
diffusion model toward a target distribution without retraining the reference score network, thereby
preserving the generative capacity of the reference model while enforcing desired properties at the
inference time. A central mechanism for achieving such alignment is guidance, which modifies the
sampling dynamics through an additional drift term. In this work, we introduce variationally stable
Doob’s matching, a novel framework for provable guidance estimation grounded in Doob’s h-transform.
Our approach formulates guidance as the gradient of logarithm of an underlying Doob’s h-function
and employs gradient-regularized regression to simultaneously estimate both the h-function and its
gradient, resulting in a consistent estimator of the guidance. Theoretically, we establish non-asymptotic
convergence rates for the estimated guidance. Moreover, we analyze the resulting controllable diffusion
processes and prove non-asymptotic convergence guarantees for the generated distributions in the
2-Wasserstein distance. Finally, we show that variationally stable guidance estimators are adaptive to
unknown low dimensionality, effectively mitigating the curse of dimensionality under low-dimensional
subspace assumptions.

Keywords: Controllable generative learning, inference-time alignment, Doob’s h-transform, conver-
gence rate

1 Introduction
Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song and Ermon, 2019; Song

et al., 2021) have emerged as powerful generative tools for sampling from data distributions,
achieving remarkable success across diverse domains, including text-to-image and text-to-
video generation (Ramesh et al., 2021), Bayesian inverse problems (Chung et al., 2023; Song
et al., 2023; Chen et al., 2025; Chang et al., 2025b), and scientific applications (Bao et al.,
2024; Li et al., 2025; Si and Chen, 2025; Ding et al., 2024; Uehara et al., 2025a). Recent
years have witnessed the development of large-scale diffusion models pre-trained on vast
datasets. Despite the robust capabilities of these reference models in capturing the training
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distribution, the target distributions of downstream generative tasks rarely align perfectly
with this reference distribution. For example, in conditional generative learning (Dhariwal
and Nichol, 2021; Ho and Salimans, 2021), reference diffusion models generate samples from a
mixture of distributions, whereas downstream tasks require sampling from specific constituent
distributions. Similarly, in posterior sampling contexts (Chung et al., 2023; Song et al., 2023;
Chen et al., 2025; Chang et al., 2025b; Purohit et al., 2025; Martin et al., 2025), the reference
distribution serves as the prior, while the target is the posterior defined by tilting the prior
with a measurement likelihood. Furthermore, downstream tasks frequently impose additional
constraints, such as human preferences or safety considerations (Domingo-Enrich et al., 2024,
2025; Uehara et al., 2025b; Kim et al., 2025; Sabour et al., 2025; Denker et al., 2025; Ren
et al., 2025), which must be satisfied without compromising the model’s generative quality.

To bridge the gap between reference and target distributions, researchers have proposed
numerous alignment methods (Xu et al., 2023; Lee et al., 2023b; Fan et al., 2023; Clark
et al., 2024; Domingo-Enrich et al., 2024, 2025; Uehara et al., 2024b, 2025b). These strategies
generally fall into two categories: fine-tuning and inference-time alignment. Fine-tuning
approaches involve retraining the reference score network via supervised learning (Lee et al.,
2023b), reinforcement learning (Fan et al., 2023; Black et al., 2024; Clark et al., 2024;
Uehara et al., 2024c), or classifier-free fine-tuning (Ho and Salimans, 2021; Zhang et al.,
2023; Yuan et al., 2023). Despite its conceptual simplicity, fine-tuning presents significant
limitations. First, it often requires a substantial collection of high-quality samples from the
target distribution, which may be unavailable in practical scenarios like posterior sampling.
Second, the computational cost of retraining score networks can be prohibitive, particularly
for large-scale models with billions of parameters (Uehara et al., 2025b). Third, fine-tuning
is vulnerable to over-optimization (Gao et al., 2023; Rafailov et al., 2024; Kim et al., 2025),
where the network overfits to limited target samples or preferences, causing it to “forget” the
valuable prior information encoded in the reference model. This degradation undermines the
fundamental advantage of leveraging pre-trained models.

In contrast, inference-time alignment (Uehara et al., 2025b; Kim et al., 2025; Sabour et al.,
2025; Denker et al., 2025; Ren et al., 2025; Pachebat et al., 2025) eliminates the need to retrain
the reference diffusion model. These methods offer substantial computational advantages and
preserve the generative capacity of the underlying model. The core technique is guidance (Jiao
et al., 2025), which incorporates target information by introducing an additional drift term
to the reference diffusion model. Within the framework of Doob’s h-transform (Rogers and
Williams, 2000; Särkkä and Solin, 2019; Chewi, 2025), the score function for the target tilted
distribution decomposes into the sum of the reference score and a guidance term, where the
guidance is defined as the gradient of the log-Doob’s h-function (Heng et al., 2024; Tang and
Xu, 2024; Denker et al., 2024, 2025). This relationship has also been investigated through
the lens of classifier guidance (Dhariwal and Nichol, 2021), stochastic optimal control (Han
et al., 2024; Tang and Zhou, 2025), and Bayes’ rule (Chung et al., 2023; Song et al., 2023).
The primary challenge lies in accurately estimating this guidance.

Guidance estimation methods can be categorized into two main approaches: approx-
imation and learning. The approximation approach, exemplified by diffusion posterior
sampling (Chung et al., 2023) and loss-guided diffusion (Song et al., 2023), relies on heuristic
approximations that often lead to inconsistencies with the underlying mathematical formula-
tion. The learning approach (Dhariwal and Nichol, 2021; Tang and Xu, 2024; Denker et al.,
2024, 2025) attempts to learn the necessary components by deep neural networks. Classifier
guidance (Dhariwal and Nichol, 2021) learns Doob’s h-function via a classifier, but this is
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effective primarily for discrete labels. Furthermore, the convergence of the plug-in gradient
estimator of the classifier is not guaranteed, potentially undermining guidance reliability (Mou,
2025, Section 3.2.2). To mitigate this, Tang and Xu (2024) estimate Doob’s h-function and
its gradient using separate neural networks, increasing training complexity. While Denker
et al. (2024) directly learn the guidance, their method requires samples from the target tilted
distribution. Denker et al. (2025) attempt to address this data requirement via iterative
retraining.

To address these limitations, we introduce variationally stable Doob’s h-matching, a
novel framework for provable guidance estimation in inference-time alignment. We propose
a gradient-regularized regression method that simultaneously estimates Doob’s h-function
and its gradient, yielding a consistent estimator of the guidance. When combined with the
pre-trained reference score, our method enables efficient sampling from the target distribution
without the need for computationally expensive fine-tuning or access to target distribution
samples.

1.1 Contributions. Our main contributions are summarized as follows:

(i) We introduce variationally stable Doob’s matching, a novel guidance estimation frame-
work for controllable diffusion models grounded in Doob’s h-transform. The Doob
h-function is estimated via a least-squares regression approach augmented with a gradi-
ent regularization, and the plug-in gradient of the logarithm of the resulting h-function
estimator yields an estimator for the Doob’s guidance. Additionally, this method is
derivative-free, meaning it does not require access to the gradient of the weight function
between the target tilted distribution and the reference distribution.

(ii) We establish non-asymptotic convergence rates for variationally stable Doob’s matching,
showing that the proposed method guarantees convergence of both the h-function
estimator and its gradient. These results provide rigorous theoretical guarantees for
Doob’s guidance estimation (Theorem 5.3). Moreover, we derive non-asymptotic conver-
gence rates for the induced controllable diffusion models, thereby establishing rigorous
guarantees for the generated distributions in the 2-Wasserstein distance (Theorem 5.6).
Additionally, we obtain convergence rates that depend only on the intrinsic dimen-
sion, thereby mitigating the curse of dimensionality under low-dimensional subspace
assumptions (Theorem 5.9 and Corollary 5.10).

1.2 Organization. The remainder of this paper is organized as follows. In Section 2, we
provide a brief introduction to diffusion models. In Section 3, we propose the stochastic
dynamics of controllable diffusion models within the framework of Doob’s h-transform, and we
present a practical algorithm to simultaneously estimate Doob’s h-function and its gradient.
Section 5 establishes non-asymptotic error bounds for both the estimation of the h-function
and the induced controllable diffusion models. Finally, concluding remarks are provided in
Section 6. Detailed proofs of theoretical results are deferred to the appendix.

2 Preliminaries on Diffusion Models
2.1 Forward and time-reversal process. We consider the diffusion model for a reference
distribution p0. The forward process of the reference diffusion model is defined by the
Ornstein–Uhlenbeck process:

(2.1) dXt = −Xt dt+
√

2 dBt, t ∈ (0, T ), X0 ∼ p0,
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where Bt is a d-dimensional standard Brownian motion, and T > 0 is the terminal time. The
transition distribution of the forward process can be expressed as:

(2.2) (Xt|X0 = x0) ∼ N (µtx0, σ
2
t Id),

where the mean and variance coefficients are given, respectively, as µt = exp(−t) and
σ2

t = 1 − exp(−2t). The forward process (2.1) is commonly referred to as the variance-
preserving (VP) SDE (Song et al., 2021) as µ2

t + σ2
t = 1 for each t ∈ (0, T ). Denote by pt the

marginal density of Xt for each t ∈ (0, T ), which satisfies

pt(xt) =
∫
φd(xt;µtx0, σ

2
t Id)p0(x0) dx0,

where φd(·;µtx0, σ
2
t Id) denotes the density function of the Gaussian distributionN (µtx0, σ

2
t Id).

The corresponding time-reversal process (Anderson, 1982) of (2.1) is characterized by:

(2.3) dX←t =
(
X←t + 2

base score︷ ︸︸ ︷
∇ log pT−t(X←t )

)
dt+

√
2 dBt, t ∈ (0, T ),

X←0 ∼ pT .

It has been established that the path measure of the time-reversal process (X←t )0≤t≤T

corresponds exactly to the reverse of the forward process (Xt)0≤t≤T (Anderson, 1982).
2.2 Path measure and filtration. We formally define the probability space for the
time-reversal process (2.3). Let Ω := C([0, T ],Rd) be the space of continuous functions
mapping [0, T ] to Rd, equipped with the topology of uniform convergence. Let F be the
Borel σ-algebra on Ω. We define the canonical process X← on Ω via the coordinate mapping
X←t (ω) = ω(t) for all ω ∈ Ω. The natural filtration is given by F := (Ft)0≤t≤T , where
Ft := σ(X←s | 0 ≤ s ≤ t) is the σ-algebra generated by the path up to time t. We denote by
P the probability measure on (Ω,F) induced by the law of the solution to the SDE (2.3)
with initial distribution X←0 ∼ pT . Consequently, the filtered probability space is denoted as
(Ω,F ,F,P), and Bt is an F-Brownian motion under P.
2.3 Training phase: score matching. In generative learning, the exact reference score
∇ log pt in the time-reversal process (2.3) is intractable. One can estimate the reference score
using samples from the reference density p0 via standard techniques such as implicit score
matching (Hyvärinen, 2005), sliced score matching (Song et al., 2020), and denoising score
matching (Vincent, 2011). Let ŝ : (0, T )×Rd → Rd denote an estimator for the prior score,
that is,

(2.4) ∥ŝ(t, ·)−∇ log pT−t∥L2(pT −t) ≤ ε,

for a small tolerence ε≪ 1. Considerable research has established theoretical guarantees for
this score estimation (Tang and Yang, 2024; Oko et al., 2023; Fu et al., 2024; Ding et al.,
2025a), leveraging standard techniques from non-parametric regression with deep neural
networks (Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Kohler and Langer, 2021; Jiao
et al., 2023).
2.4 Inference phase: sampling. Given a reference score estimator ŝ in (2.4), the inference
phase of diffusion models aims to generate samples by simulating the time-reversal process
with estimated score. Since the explicit solution of the time-reversal process is intractable, we
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employ an exponential integrator (Hochbruck and Ostermann, 2005, 2010; Lu et al., 2022a;
Zhang and Chen, 2023). This approach is well-suited for solving the time-reversal process
due to the semi-linearity of the drift term of the SDE in (2.3).

Let K ∈N denote the number of discretization steps, and let T0 > 0 be an early-stopping
time. We define a sequence of uniform time points tk := kh for k = 0, . . . ,K, where the step
size is h := (T − T0)/K. In each time sub-interval, the exponential integrator approximates
the score function by its value at the left endpoint:

(2.5)
dX̂←t = (X̂←t + 2ŝ(kh, X̂←kh)) dt+

√
2 dBt, t ∈ [kh, (k + 1)h),

X̂←0 ∼ N (0, Id),

where 0 ≤ k ≤ K − 1. The resulting linear approximation to the original semi-linear SDE
has the following explicit solution:

X̂←(k+1)h = exp(h)X̂←kh + 2ϕ2(h)ŝ(kh, X̂←kh) + ϕ(2h)ξk, 0 ≤ k ≤ K − 1,

where ϕ(z) :=
√

exp(z)− 1, and ξ0, . . . , ξK−1 are i.i.d. standard Gaussian random variables.

Remark 2.1 (Initialization). Note that the true initial distribution of the time-reversal
process (2.3) is pT , rather than the N (0, Id) used in (2.5). We adopt the standard normal
distribution because sampling from N (0, Id) is significantly more computationally tractable.
This approximation is justified by the fact that pT converges to N (0, Id) exponentially in
KL-divergence as T → ∞ (Bakry et al., 2014; Vempala and Wibisono, 2019); thus, the
Gaussian initialization is valid for a sufficiently large terminal time T .

3 Controllable Diffusion Models and Doob’s Transform
In this section, we propose controllable diffusion models for sampling from a target

distribution, defined as the reference distribution tilted by a weight function. We utilize the
theory of measure change for diffusion processes on the filtered space (Ω,F ,F,P).

3.1 Problem setup. We assume access to a pre-trained reference diffusion model (2.5)
that generates samples approximately from the reference distribution p0. We aim to sample
from a tilted distribution q0, defined by reweighting the reference distribution with a known
weight function w : Rd → R≥0:

(3.1) q0(x) := w(x)p0(x)
Z

, where Z :=
∫
w(x)p0(x) dx <∞.

Our goal is to derive a new diffusion process that generates samples from the tilted distribution
q0 directly by introducing a drift correction to the pre-trained reference diffusion model (2.5).

This problem encompasses a wide range of application scenarios.

Example 1 (Bayesian inverse problems). Bayesian inverse problems play a critical role in
scientific computing (Stuart, 2010; Kantas et al., 2014; Ding et al., 2024), image science (Chung
et al., 2023; Mardani et al., 2024; Purohit et al., 2025; Chang et al., 2025b), and medical
imaging (Song et al., 2022). In Bayesian inverse problems, we aim to recover an unknown
signal X0 ∈ Rd from noisy measurements Y ∈ Rm, which are linked by the following
measurement model:

(3.2) Y = A(X0) + n,
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where A : Rd → Rm is a known measurement operator, and n ∈ Rm represents a measurement
noise with a known distribution. The Bayesian approach incorporates prior knowledge about
X0 in the form of a prior distribution p0. Given observed measurements Y = y, the goal of
Bayesian inverse problems is to sample from the posterior distribution:

(3.3) q0(x) := pX0|Y(x|y) = w(x)p0(x)
Z

,

where w(x) := pY|X0(y|x) is a likelihood determined by the measurement model (3.2), and Z
is a partition function to ensure q0 is a valid probability density. For example, for a Gaussian
noise n ∼ N(0, σ2Id), it holds that

w(x) = (2πσ2)−
d
2 exp

(
− 1

2σ2 ∥y−A(x)∥22
)
.

In Bayesian inverse problems, one typically has a reference diffusion model pre-trained on the
prior distribution, and aims to sample from the posterior distribution (3.3) without retraining
the reference model.
Example 2 (Reward-guided generation). In the reward-guided generation (Domingo-Enrich
et al., 2025; Uehara et al., 2025b; Kim et al., 2025; Sabour et al., 2025; Denker et al., 2025;
Ren et al., 2025), human preferences and constraints can be encoded into a reward function
r : Rd → R. For instance, in text-to-image generation, the reward function r quantifies how
well the generated data aligns with the input prompt. In practice, such reward function can
be learned from the human feedback or preference data (Stiennon et al., 2020; Ouyang et al.,
2022; Lee et al., 2023b). For the sake of simplicity, we assume throughout this work that the
reward function has already been given. A naive approach to reward-guided generation is
to maximize the expected reward maxπ∈P Eπ[r], where P is the set of probability measures
on Rd. However, solely maximizing the expected reward may lead to over-optimization and
degenerate solutions (Kim et al., 2025). To mitigate this, entropy regularization (Uehara
et al., 2024a; Tang and Zhou, 2025) is incorporated into the objective functional, yielding the
following optimization problem:

(3.4) q0 := arg max
π∈P

Eπ[r]− αKL(π∥p0),

where α > 0 is a regularization parameter, and p0 is the density of a reference distribution,
i.e., the distribution corresponding to the pre-trained reference diffusion model. This objective
comprises two components: the expected reward, which captures human preferences, and
the KL-divergence term, which prevents the distribution from deviating excessively from the
reference diffusion model. The closed-form solution to this optimization problem (3.4) is
given by (Rafailov et al., 2023):

q0(x) = w(x)p0(x)
Z

, w(x) := exp
(r(x)
α

)
,

where Z is the partition function to ensure q0 is a valid probability density. In reward-guided
generation, the central objective is to incorporate preferences exclusively during the inference
phase, thereby avoiding the substantial computational cost of retraining the large-scale
reference diffusion model.
Example 3 (Transfer learning for diffusion models). Diffusion models have achieved remarkable
success in image generation. However, their performance critically depends on the availability
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of large-scale training data. In the scenarios of few-shot generation, training diffusion models
solely on limited samples typically results in poor generative performance. To retain strong
generative capability under data scarcity, a common strategy is to transfer expressive diffusion
models pre-trained on large datasets to the target domain (Ouyang et al., 2024; Wang
et al., 2024; Zhong et al., 2025; Bahram et al., 2026). Formally, transfer learning aims to
adapt a model pre-trained on a large-scale source distribution to a target distribution of
much smaller size and diversity of samples. However, directly fine-tuning a large pre-trained
diffusion model using only limited target samples often leads to severe overfitting (Wang
et al., 2024). To address this issue, transfer learning approaches for diffusion models typically
train a lightweight guidance network on the limited target data and combine it with the
pre-trained reference score network, yielding a modified diffusion model capable of sampling
from the target distribution (Ouyang et al., 2024; Zhong et al., 2025; Bahram et al., 2026).
Concretely, Ouyang et al. (2024) estimates the density ratio between the target and source
distributions,

w(x) := q0(x)
p0(x) ,

using limited samples from the target dsitribution. For simplicity, we assume throughout
this work that the density ratio is known. Under this assumption, the objective of transfer
learning for diffusion models is to sample from the target distribution q0 by leveraging the
pre-trained reference diffusion model together with the estimated density ratio.
3.2 Controllable diffusion models with Doob’s h-transform. In this subsection,
we achieve inference-time alignment by incorporating guidance into the reference diffusion
models via Doob’s h-transform (Rogers and Williams, 2000; Särkkä and Solin, 2019; Heng
et al., 2024; Chewi, 2025). We begin by constructing a target path measure Q on the filtered
probability space (Ω,F ,F). We assume that Q is absolutely continuous with respect to the
reference path measure P defined in Section (2.2). By the Radon-Nikodym theorem, this
relationship is characterized by the existence of an F-adapted process (Lt)0≤t≤T with Lt ≥ 0,
such that for every t ∈ [0, T ]:

(3.5) Lt := dQ
dP

∣∣∣
Ft

.

The process Lt is known as the Radon-Nikodym derivative process, representing the likelihood
ratio between the target and reference measures conditioned on the filtration Ft.

We impose two boundary conditions on the target path measure Q: (i) the marginal
distribution of the initial state X←0 under Q must match that of P; and (ii) the marginal
distribution of the terminal state X←T under Q must coincide with the tilted distribution q0
defined in (3.1). To enforce these constraints, we specify the Radon-Nikodym derivatives of
Q with respect to P at the initial and terminal times as follows:

(3.6) L0 = dQ
dP

∣∣∣
F0
≡ 1, and LT = dQ

dP

∣∣∣
FT

= dQ
dP = w(X←T )

EP[w(X←T )] ,

where the denominator serves as the normalizing constant ensuring that Q is a valid probability
measure, i.e., EP[LT ] = 1.

The rest of our derivation proceeds in two steps. First, we characterize the stochastic
dynamics of X←t under the target measure Q. Second, by invoking the weak uniqueness of
solutions to stochastic differential equations (Øksendal, 2003, Lemma 5.3.1), we construct a
controllable diffusion process under the reference path measure P whose terminal distribution
coincides with the target tilted distribution q0.
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Dynamics under the target path measure. Girsanov’s theorem (Øksendal, 2003, Theorem
8.6.8) establishes a fundamental correspondence between a drift shift in the driving Brownian
motion and the dynamics of the associated Radon-Nikodym derivative process. Accordingly,
we first characterize the evolution of the time-dependent likelihood ratio Lt.

Proposition 3.1 (Doob’s h-function). The Radon-Nikodym derivative process Lt, as defined
in (3.5), admits the following representation:

Lt = EP
[ dQ

dP

∣∣∣Ft

]
= h∗(t,X←t )
EP[w(X←T )] ,

where h∗ : [0, T ] ×Rd → R, referred to as Doob’s h-function, is defined as the conditional
expectation of the terminal weight:

(3.7) h∗(t,x) := EP[w(X←T ) | X←t = x].

Furthermore, the log-likelihood ratio satisfies the following SDE:

d(logLt) = ∇ log h∗(t,X←t )⊤
√

2 dBt − ∥∇ log h∗(t,X←t )∥22 dt.

The proof of Proposition 3.1 is provided in Appendix A. With the dynamics of logLt

established, we derive the stochastic dynamics of X←t under the target measure Q via
Girsanov’s theorem (Øksendal, 2003, Theorem 8.6.6).

Proposition 3.2. Let the reference process X←t satisfy the SDE (2.3) under the path measure
P, and let Q be the target path measure defined by (3.6). Assume that the Novikov condition
holds:

(3.8) EP
[

exp
( ∫ T

0
∥∇ log h∗(s,X←s )∥22 ds

)]
<∞.

Define a process (B̃t)1≤t≤T by

(3.9) dB̃t = dBt −
√

2∇ log h∗(t,X←t ) dt,

where Bt is a Brownian motion under P. Then B̃t is a standard Brownian motion under Q.
Further, under the path measure Q, the reference process X←t in (2.3) evolves according to:

(3.10) dX←t = (X←t + 2∇ log pT−t(X←t ) + 2∇ log h∗(t,X←t )) dt+
√

2 dB̃t.

The proof is deferred to Appendix A. By the construction in (3.6), the law of X←T under
Q coincides with the target tilted distribution q0.

Remark 3.3 (Novikov condition). The condition in (3.8) ensures that the exponential local
martingale defined by the drift shift is a true martingale (Karatzas and Shreve, 1998,
Corollary 5.13), which is sufficient for the Radon-Nikodym derivative to be well-defined and
for Girsanov’s theorem to apply.
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Controllable diffusion process under the reference measure. Although Proposition 3.2
constructs stochastic dynamics driven by Brownian motion under Q that achieve the desired
terminal distribution q0, practical implementation necessitates an SDE driven by Brownian
motion under the reference measure P.

To address this, we construct a surrogate process Z←t on the reference probability space
(Ω,F ,F,P) that adopts the drift derived for Q:

(3.11) dZ←t =
(
Z←t + 2∇ log pT−t(Z←t )︸ ︷︷ ︸

base score

+2∇ log h∗(t,Z←t )︸ ︷︷ ︸
Doob’s guidance

)
dt+

√
2 dBt.

Since the process Z←t driven by the P-Brownian motion (3.11) satisfies the same SDE as X←t
driven by the Q-Brownian motion (3.10), the weak uniqueness property of SDE solutions
guarantees (Øksendal, 2003, Lemma 5.3.1) that the law of Z←t under P is identical to the law
of X←t under Q for all t ∈ [0, T ]. Thus, the law of Z←T under P coincides the target tilted
distribution q0. For a detailed formal statement, see Øksendal (2003, Theorem 8.6.8).

4 Variationally Stable Doob’s Matching
We have thus far established a controllable diffusion process (3.11) capable of generating

samples from the target tilted distribution q0. However, the Doob’s h-guidance, required
by (3.11), remains intractable. This subsection proposes a variationally stable Doob’s matching
method to address the estimation of the Doob’s guidance.
4.1 Vanilla least-squares regression for Doob’s matching. For any t ∈ (0, T ), the
Doob’s h-function h∗t := h∗(t, ·) defined as (3.7) is the unique minimizer of the following
implicit Doob’s matching objective:

(4.1)
Jt(ht) = EP

[
∥ht(X←t )− w(X←T )∥22

]
= EX0∼p0Eϵ∼N (0,Id)

[
∥ht(µT−tX0 + σT−tϵ)− w(X0)∥22

]
,

where w : Rd → R≥0 is the known weight function in (3.1). The following proposition justifies
the use of Jt as a surrogate for the explicit L2-distance.

Proposition 4.1. For every t ∈ (0, T ), the Doob’s h-function h∗t in (3.7) minimizes the
implicit Doob’s matching objective (4.1). Further,

Jt(ht) = EP
[
∥ht(X←t )− h∗t (X←t )∥22

]
+ V 2

t ,

where V 2
t := EP[Var(w(X←T )|X←t )] is a constant independent of ht.

The proof of Proposition 4.1 is provided in Appendix B.
4.2 Limitations of vanilla regression. Crucially, computing the Doob’s guidance∇ log h∗t
in (3.11) requires estimating not only the function h∗t itself but also its gradient ∇h∗t , as the
guidance is given by:

∇ log h∗t (x) = ∇h
∗
t (x)

h∗t (x) , x ∈ Rd.

According to Proposition 4.1, the objective Jt is only coercive with respect to the
L2(pT−t)-norm. Specifically, for any ht ∈ L2(pT−t),

(4.2) Jt(ht)− Jt(h∗t ) = ∥ht − h∗t ∥2L2(pT −t).

9
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However, even if ht is close to h∗t in the L2 sense, the gradient ∇ht may remain highly
oscillatory. This leads to an unstable plug-in estimator for the Doob’s guidance, a difficulty
noted in prior works such as Tang and Xu (2024, Section 3.2.1) and Mou (2025, Section 3.2.2).
Similar issues arise in related contexts, including classifier guidance (Dhariwal and Nichol,
2021), Monte Carlo regression (Uehara et al., 2025b, Section 2.2), and Ouyang et al. (2024).

To illustrate this fundamental limitation, consider the sequence of functions fn : I → R
defined by x 7→ n−1 sin(nx), alongside the zero function f0 ≡ 0, where I := [0, 2π]. While
∥fn − f0∥L2(I) → 0 as n → ∞, the distance between their derivatives does not vanish, i.e.,
limn→∞ ∥f ′n − f ′0∥L2(I) ̸= 0. As a result, the convergence of the plug-in Doob’s guidance
estimator derived from vanilla regression (4.1), as utilized in Uehara et al. (2025b); Ouyang
et al. (2024), cannot be guaranteed in general.

To mitigate this, Tang and Xu (2024) estimate Doob’s h-function and its gradient
separately via a martingale approach. In contrast, in the remainder of this work, we propose
an approach to simultaneously estimate both the function and its gradient.
4.3 Variationally stable Doob’s matching. To simultaneously estimate the Doob’s
h-function and its gradient, we adopt a gradient-regularized regression (Drucker and Le Cun,
1991, 1992; Ding et al., 2025b). The population risk is defined by incorporating an additional
Sobolev regularization to (4.1):

(4.3) hλ
t = arg min

ht:Rd→Rd

J λ
t (ht) := Jt(ht) +

gradient regularization︷ ︸︸ ︷
λEP

[
∥∇ht(X←t )∥22

]
= Jt(ht) + λEX0∼p0Eε∼N (0,Id)

[
∥∇ht(µT−tX0 + σT−tε)∥22

]
,

where λ > 0 is a regularization parameter. The following results characterize the regularization
gap and the variational stability of this formulation.

Proposition 4.2 (Regularization gap). Let λ > 0, h∗t be the Doob’s h-function defined
as (3.7), and hλ

t be the minimizer of J λ
t defined as (4.3). Then h∗t ∈ H2(pT−t), and

∥hλ
t − h∗t ∥2L2(pT −t) ≤ λ

2∥∆h∗t +∇h∗t · ∇ log pT−t∥2L2(pT −t),

∥∇hλ
t −∇h∗t ∥2L2(pT −t) ≤ λ∥∆h

∗
t +∇h∗t · ∇ log pT−t∥2L2(pT −t).

The proof of Proposition 4.2 is provided in Appendix B. This proposition demonstrates
that as λ→ 0, the minimizer hλ

t of the regularized objective (4.3) converges to h∗t in H1-norm.
More importantly, the objective is variationally stable in the H1 sense:

Proposition 4.3 (Variational stability). Let λ > 0, and hλ
t be the minimizer of J λ

t defined
as (4.3). Then for any ht ∈ H1(pT−t), we have

1
max{λ, 1}

{
J λ

t (ht)− J λ
t (hλ

t )
}
≤ ∥ht − hλ

t ∥2H1(pT −t) ≤
1

min{λ, 1}
{
J λ

t (ht)− J λ
t (hλ

t )
}
.

The proof of Proposition 4.3 is provided in Appendix B. We refer to the regularized
objective J λ

t as variationally stable because the convergence in this objective functional
necessitates simultaneous convergence in both the function values and their gradients, i.e.,
stability in the H1 sense. Such variational stability ensures that any candidate function
ht achieving a low objective value J λ

t (ht) is guaranteed to be an approximation of the
ground-truth Doob’s h-function in both value and gradient.

10
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Comparison between vanilla and gradient-regularized Doob’s matching. The dis-
tinction between vanilla Doob’s matching (4.1) and the proposed gradient-regularized Doob’s
matching (4.3) is fundamental for stable diffusion guidance estimation. While vanilla regres-
sion guarantees convergence in the L2-norm; see (4.2), it can be unstable in the H1 sense. In
contrast, the proposed objective J λ

t is coercive with respect to the H1 norm; that is, for a
fixed λ > 0,

J λ
t (ht)− J λ

t (hλ
t ) ≃ ∥ht − hλ

t ∥2H1(pT −t).

This property ensures the simultaneous estimation of Doob’s h-function and its gradient,
thereby yielding a plug-in estimator for Doob’s guidance with mathematical guarantees.
4.4 Doob’s guidance estimation. Since the expectation in the population risk (4.3)
is computationally intractable, we approximate it by empirical risk using independent and
identically distributed samples:

(4.4) Ĵ λ
t (ht) := Ĵt(ht) + λ

n

n∑
i=1
∥∇ht(µT−tXi

0 + σT−tε
i)∥22,

where the empirical least-squares risk is defined as

(4.5) Ĵt(ht) := 1
n

n∑
i=1
∥ht(µT−tXi

0 + σT−tε
i)− w(Xi

0)∥22.

Here X1
0, . . . ,Xn

0 are independent and identically distributed random variables drawn from
the reference distribution p0, and ε1, . . . , εn are independent standard Gaussian random
variables. Then one has a gradient-regularized empirical risk minimizer:

(4.6) ĥλ
t ∈ arg min

ht∈Ht

Ĵ λ
t (ht),

where Ht is a hypothesis class, which is chosen as a neural network class in this work.
The Doob’s matching with gradient regularization (4.6) yields a valid plug-in estimator

of the Doob’s guidance:

(4.7) ĝλ
t (z) := ∇ log ĥλ

t (z) = ∇ĥ
λ
t (z)

ĥλ
t (z)

≈ ∇h
∗
t (z)

h∗t (z) = ∇ log h∗t (z), z ∈ Rd.

4.5 A summary of computing procedure. By a similar argument as Section 2.4, we
have the exponential integrator for the controllable diffusion model:

(4.8)
dẐ←t = (Ẑ←t + 2ŝ(kh, Ẑ←kh) + 2ĝλ(kh, Ẑ←kh)) dt+

√
2 dBt, t ∈ (kh, (k + 1)h),

Ẑ←0 ∼ N (0, Id),

where 0 ≤ k ≤ K − 1, the pre-trained reference score estimator ŝ is defined as (2.4), and the
Doob’s guidance estimator ĝλ is defined as (4.7).

We apply post-processing to the generated particle Ẑ←T−T0
to ensure numerical stability

and facilitate the theoretical analysis presented in Theorem 5.6 (Lee et al., 2023a; Chen
et al., 2023a). First, we assume the target distribution q0 is concentrated on a domain
centered at the origin, such as a distribution with compact support (Assumption 1) or with
light tails. Consequently, we introduce a truncation operator to the particles obtained from
the controllable diffusion model (4.8). Second, because the controllable diffusion process
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is terminated at an early-stopping time T0, there exists a mean shift between the target
distribution q0 and the early-stopping distribution qT0 ≈ q̂T−T0 , as indicated by (2.2). To
mitigate this drift, we employ a scaling operator. Specifically, for R > 0, we define a truncation
operator TR : z 7→ z1B(0,R)(z) and a scaling operator M : z 7→ µ−1

T0
z. The final processed

particle is defined as

(4.9) M◦ TR(Ẑ←T−T0) = µ−1
T0

Ẑ←T−T01B(0,R)(Ẑ←T−T0),

and we denote its density by (M◦ TR)♯q̂T−T0 .
A complete procedure is summarized in Algorithm 1.

Algorithm 1: Inference-time alignment via variationally stable Doob’s matching
Input: Reference score estimator ŝ, the weight function w, the regularization

parameter λ, the step size h, and the number of steps K.
Output: Particle M◦ TR(Ẑ←T−T0

) follows the tilted distribution q0 approximately.
1 # Doob’s matching
2 Estimate Doob’s h-function by ĥλ

t via gradient regularized Doob’s matching (4.6).
3 # Controllable generation
4 Generate the initial particle Ẑ←0 ∼ N (0, Id).
5 for k = 0, . . . ,K − 1 do
6 Evaluate the reference score: ŝk ← ŝ(kh, Ẑ←kh).
7 Evaluate the Doob’s guidance: ĝk ← ∇ log ĥλ(kh, Ẑ←kh).
8 Exponential integrator: Ẑ←(k+1)h ∼ N (exp(h)Ẑ←kh + 2ϕ2(h)(ŝk + ĝk), ϕ2(2h)Id).
9 end

10 # Truncation and scaling
11 M◦ TR(Ẑ←T−T0

)← µ−1
T0

Ẑ←T−T0
1B(0,R)(Ẑ←T−T0

).
12 return M◦ TR(Ẑ←T−T0

)

5 Convergence Analysis
In this section, we derive a non-asymptotic convergence rate for the variationally stable

Doob’s matching (4.6) and the induced controllable diffusion model (4.8). Furthermore, we
demonstrate that this convergence rate mitigates the curse of dimensionality under mild
assumptions.
5.1 Assumptions. We begin by outlining the essential technical assumptions required for
our theoretical results.
Assumption 1 (Bounded support). The support of the target distribution q0 is a compact
set contained within the hypercube {x0 ∈ Rd : ∥x0∥∞ ≤ 1}.

Assumption 1 is a standard condition imposed on the data distribution (Lee et al., 2023a;
Oko et al., 2023; Chang et al., 2025a; Beyler and Bach, 2025). This constraint is well-motivated
by practical applications; for instance, image and video data consist of bounded pixel values,
thereby satisfying this requirement.
Assumption 2 (Bounded weight function). The weight function w defined in (3.1) is bounded
from above and bounded away from zero. Specifically, there exist constants 0 < B < 1 <
B <∞ such that

B ≤ w(x) ≤ B̄, for all x ∈ supp(q0).
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Assumption 2 implies that the reference distribution p0 and the tilted distribution q0 satisfy
mutual absolute continuity, ensuring that their supports coincide (i.e., supp(p0) = supp(q0)).
This condition is crucial for establishing the regularity of Doob’s h-function. Furthermore,
the ratio κ := B̄/B serves as a condition number that characterizes the difficulty of the
controllable diffusion task, as discussed in the context of posterior sampling by Purohit et al.
(2025); Ding et al. (2024); Chang et al. (2025b).

Under Assumptions 1 and 2, we establish the regularity properties of Doob’s h-function
defined in (3.7).

Proposition 5.1. Suppose Assumptions 1 and 2 hold. Then for all t ∈ (0, T ) and x ∈ Rd,
the following bounds hold:

(i) B ≤ h∗t (x) ≤ B̄;
(ii) max1≤k≤d |Dkh

∗
t (x)| ≤ 2σ−2

T−tB̄; and
(iii) max1≤k,ℓ≤d |D2

kℓh
∗
t (x)| ≤ 6σ−4

T−tB̄,

where Dk and D2
kℓ denote the first-order and second-order partial derivatives with respect to

the input coordinates, respectively.

The proof of Proposition 5.1 is deferred to Appendix C. It is worth noting that Propo-
sition 5.1 relies solely on the boundedness of the weight function w, without requiring the
existence or smoothness of its gradients. Nevertheless, we establish that Doob’s h-function
admits bounded derivatives. This result stems from the definition of Doob’s h-function as a
posterior expectation under a Gaussian likelihood; the inherent smoothness of the Gaussian
kernel endows the posterior expectation with strong regularity properties.

Assumption 3 (Reference score estimation error). The reference score estimator ŝ defined
in (2.4) satisfies the following error bound:

1
T

K−1∑
k=0

hEP
[
∥ŝ(kh,X←kh)−∇ log pT−kh(X←kh)∥22

]
≤ ε2

ref .

Assumption 3 requires the L2-error of the reference score estimator ŝ to be bounded
with respect to the reference path measure P. In our setting, where numerous samples from
the reference distribution p0 are available, estimators satisfying this bound can be obtained
via implicit score matching (Hyvärinen, 2005), sliced score matching (Song et al., 2020), or
denoising score matching (Vincent, 2011). While one can derive explicit bounds of reference
score matching as Tang and Yang (2024); Oko et al. (2023); Fu et al. (2024); Ding et al.
(2025a); Yakovlev and Puchkin (2025a); Yakovlev et al. (2025) using non-parametric regression
theory for deep neural networks (Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Kohler and
Langer, 2021; Jiao et al., 2023), we adopt this condition to maintain clarity of presentation,
following the convention of Lee et al. (2023a); Chen et al. (2023a); Beyler and Bach (2025);
Kremling et al. (2025).
5.2 Error bounds for the Doob’s guidance estimator. We begin by introducing the
concept of Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971; Anthony
et al., 1999; Bartlett et al., 2019), which measures the complexity of a function class.

Definition 1 (VC-dimension). Let H be a class of functions mapping from X to R. For
any num-negative integer m, the growth function of H is defined as

ΠH (m) := max
x1,...,xm∈X

|{(sgn h(x1), . . . , sgn h(xm)) : h ∈H }|.

13
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We say H shatters the set {x1, . . . , xm}, if

|{(sgn h(x1), . . . , sgn h(xm)) : h ∈H }| = 2m.

The Vapnik-Chervonenkis dimension of H , denoted by VCdim(H ), is the size of the largest
shattered set, i.e., the largest m such that ΠH (m) = 2m.

To simplify notation, we define the gradient classes and their associated VC-dimensions.
For a differentiable hypothesis class H consisting of functions mapping from Rd to R, the
VC-dimension of the gradient hypothesis class is defined as

VCdim(∇H ) := max
1≤k≤d

VCdim(DkH ), DkH := {Dkh : h ∈H },

where Dk represents the derivative with respect to the k-th entry of the input.
The following lemma provides an oracle inequality for the variationally stable Doob’s

matching (4.6).

Lemma 5.2 (Oracle inequality). Suppose Assumptions 1 and 2 hold. Let t ∈ (0, T ) and let
Ht be a hypothesis class. Let ĥλ

t be the gradient-regularized empirical risk minimizer defined
as (4.6), and let h∗t be the Doob’s h-function defined as (3.7). Then the following inequalities
hold:

E
[
∥ĥλ

t − h∗t ∥2L2(pT −t)

]
≲ inf

ht∈Ht

{
∥ht − h∗t ∥2L2(pT −t) + λ∥∇ht −∇h∗t ∥2L2(pT −t)

}
︸ ︷︷ ︸

(I)

+ B̄2
(VCdim(Ht)

n log−1 n

) 1
2 + λdB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2

︸ ︷︷ ︸
(II)

+ λ2dB̄2

σ8
T−t︸ ︷︷ ︸

(III)

,

E
[
∥∇ĥλ

t −∇h∗t ∥2L2(pT −t)

]
≲ inf

ht∈Ht

{ 1
λ
∥ht − h∗t ∥2L2(pT −t) + ∥∇ht −∇h∗t ∥2L2(pT −t)

}
︸ ︷︷ ︸

(I))

+ B̄2

λ

(VCdim(Ht)
n log−1 n

) 1
2 + dB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2

︸ ︷︷ ︸
(II)

+ λdB̄2

σ8
T−t︸ ︷︷ ︸

(III)

,

where the notation ≲ hides absolute constants.

The proof of Lemma 5.2 is deferred to Appendix D. Both oracle inequalities for Doob’s
h-function and its gradient decompose the error into three components: approximation error,
generalization error, and regularization gap.

(I) The approximation error is defined as the minimal H1-distance between functions
in the hypothesis class Ht and the ground-truth Doob’s h-function h∗t , measuring the
approximation capability of Ht.

(II) The generalization error captures the error arising from finite-sample approximation,
which vanishes as the number of samples approaches infinity.

(III) The regularization gap is introduced by the gradient regularization in the objective
functional, which causes the minimizer of the variationally stable objective (4.3) to
deviate from the ground-truth Doob’s h-function h∗t (3.7). This gap has been analyzed
in Proposition 4.2.
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Comparison with oracle inequality of vanilla regression. Lemma 5.2 is analogous to
the oracle inequality found in regression problems. Let ĥt be the vanilla estimator estimated
by minimizing (4.5) over the hypothesis class Ht. Informally, the following oracle inequality
holds:

(5.1) E
[
∥ĥt − h∗t ∥2L2(pT −t)

]
≲ inf

ht∈Ht

∥ht − h∗t ∥2L2(pT −t)︸ ︷︷ ︸
approximation

+ B̄2
(VCdim(Ht)

n log−1 n

) 1
2

︸ ︷︷ ︸
generalization

.

Comparing (5.1) with Lemma 5.2 reveals several crucial differences:

(i) The approximation error in Lemma 5.2 is measured in the H1-norm, whereas in (5.1), it
is measured in the L2-norm. This distinction is natural because we require the estimator
to converge in the H1-norm; thus, simultaneous approximation of the function and its
derivatives is essential. Simultaneous approximation using neural networks has been
investigated in various contexts (Li et al., 2019; Gühring et al., 2020; Gühring and
Raslan, 2021; Duan et al., 2022a,b; Lu et al., 2022b; Shen et al., 2022, 2024; Belomestny
et al., 2023; Yakovlev and Puchkin, 2025b).

(ii) In vanilla regression, the generalization error in (5.1) depends only on the complexity
of the hypothesis class. In contrast, the generalization error bounds in Lemma 5.2
also depend on the complexity of the derivative classes ∇Ht. This occurs because
the objective functional of the gradient-regularized Doob’s matching (4.3) includes
the gradient norm term. Consequently, the error from finite-sample approximation is
influenced not only by the complexity of the hypothesis class but also by that of the
derivative class.

(iii) The most significant difference lies in the regularization error. If we focus solely on
the oracle inequality for ĥλ

t , letting λ go to zero reduces the expression to the vanilla
regression oracle inequality (5.1). However, the bound for the gradient ∇ĥλ

t diverges as
the regularization parameter λ approaches zero. This highlights the key advantage of
our gradient-regularized method: the gradient-regularized is essential for guaranteeing
simultaneous convergence of both the estimator value and its gradient. Additionally,
there exists a trade-off with respect to λ in the oracle inequality for ĥλ

t : a larger λ
leads to larger regularization error, while reduces the approximation and generalization
errors.

Given the oracle inequality for a general hypothesis class Ht, we consider the specifical
case that Ht is chosen as a neural network class, with the aim of deriving non-asymptotic
convergence rates. We begin by formally defining the neural network class.

Definition 2 (Neural network class). A function implemented by a neural network h : RN0 →
RNL+1 is defined by

h(x) = TL(ϱ(TL−1(· · · ϱ(T0(x)) · · · ))),

where the activation function ϱ is applied component-wise and Tℓ(x) := Aℓx + bℓ is an
affine transformation with Aℓ ∈ RNℓ+1×Nℓ and bℓ ∈ RNℓ for ℓ = 0, . . . , L. In this paper, we
consider the case where N0 = d + 1 and NL+1 = 1. The number L is called the depth of
neural networks. Additionally, S :=

∑L
ℓ=0(∥Aℓ∥0 + ∥bℓ∥0) represents the total number of

non-zero weights within the neural network. We denote by N(L, S) the set of neural networks
with depth at most L and the number of non-zero weights at most S.
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The following theorem establishes the convergence rate of the estimated Doob’s guidance
given in (4.7).
Theorem 5.3 (Convergence rate of Doob’s guidance). Suppose Assumptions 1 and 2 hold.
Let t ∈ (0, T ). Set the hypothesis class Ht as

(5.2) Ht :=

ht ∈ N(L, S) :
sup

x∈Rd

ht(x) ≤ B̄, inf
x∈Rd

ht(x) ≥ B,

max
1≤k≤d

sup
x∈Rd

|Dkht(x)| ≤ 2σ−2
T−tB̄

 ,

where L = O(logn) and S = O(n
d

d+8 ). Let ĥλ
t be the gradient-regularized empirical risk

minimizer defined as (4.6), and let h∗t be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

E
[
∥∇ log ĥλ

t −∇ log h∗t ∥2L2(pT −t)

]
≤ Cσ−8

T−tn
− 2

d+8 log4 n,

provided that the regularization parameter λ is set as λ = O(n−
2

d+8 ), where C is a constant
depending only on d, B̄, and B.

The proof of Theorem 5.3 is deferred to Appendix D. This theorem demonstrates that
the L2-error of the Doob’s guidance estimator (4.7) converges to the exact Doob’s guidance
in (3.11) as the sample size increases, provided that the size of the neural network is
appropriately chosen. However, since the prefactor σ−8

T−t diverges as t approaches the terminal
time T , early stopping in controllable diffusion models (4.8) is required to ensure the validity
of the Doob’s guidance estimator.
Remark 5.4 (Comparisons with previous work). Simultaneous estimation of a function and
its gradient using deep neural network has been investigated by Ding et al. (2025b). The
most important distinction in our work lies in the elimination of the convexity assumption on
the hypothesis class. Specifically, Ding et al. (2025b, Lemma 7) propose an oracle inequality
under the assumption that the hypothesis class is convex. Furthermore, Ding et al. (2025b,
Theorem 3) requires the estimator to be a minimizer of the gradient-regularized empirical risk
over the convex hull of a neural network class, which is intractable in practice. In contrast,
Lemma 5.2 eliminates the requirement of convexity for the hypothesis class, and Theorem 5.3
removes the need for the convex hull of the neural network class. This aligns the theoretical
analysis more closely with practical computing.
5.3 Error bounds for the controllable diffusion models. In this subsection, we
establish a non-asymptotic convergence rate for the controllable diffusion models (4.8). We
begin by presenting an error decomposition for the KL-divergence between the early-stopping
distribution qT0 and the distribution of Ẑ←T−T0

.
Lemma 5.5 (Error decomposition). Suppose Assumptions 1, 2, and 3 hold. Let q̂T−T0 be the
marginal density of Ẑ←T−T0

defined in (4.8). Then it follows that

KL(qT0∥q̂T−T0) ≲ B̄

B

K−1∑
k=0

hEP
[
∥∇ log ĥkh(X←kh)−∇ log h∗kh(X←kh)∥22

]
︸ ︷︷ ︸

(I)

+ B̄

B
Tε2

ref︸ ︷︷ ︸
(II)

+ d exp(−T )︸ ︷︷ ︸
(III)

+ d2T 2

σ4
T0
K︸ ︷︷ ︸

(IV)

,
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where the notation ≲ hides absolute constants.

The proof of Lemma 5.5 is deferred to Appendix E. Lemma 5.5 decomposes the KL-
divergence between the early-stopping distribution qT0 and the distribution of Ẑ←T−T0

into four
components: (I) Doob’s guidance error, (II) the reference score error, (III) the initialization
error, and (IV) the discretization error. Specifically, Doob’s guidance error represents the
average error of Doob’s h-guidance estimator at each time point, which has been investigated
in Theorem 5.3; the reference score error is the average error of the reference score estimator
at each time point, which is discussed in Assumption 3; the initialization error arises from
replacing the initial distribution qT = pT with a Gaussian distribution in (4.8); and the
discretization error is induced by the exponential integrator.

While Lemma 5.5 characterizes the error between the estimated distribution q̂T−T0 and
the early-stopping distribution qT0 , our primary interest lies in the discrepancy between q̂T−T0

and the target tilted distribution q0 defined in (3.1). Since the KL-divergence does not satisfy
the triangular inequality, we instead propose an error bound in 2-Wasserstein distance. The
following theorem establishes the 2-Wasserstein distance between the scaled and truncated
distribution (M◦ TR)♯q̂T−T0 defined in (4.9) and the target tilted distribution q0.

Theorem 5.6 (Convergence rate of controllable diffusion models). Suppose Assumptions 1, 2,
and 3 hold. Let ε ∈ (0, 1). Set the hypothesis classes {HT−kh}K=1

k=0 as (5.2) with the same
depth L and number of non-zero parameters S as Theorem 5.3. Let q̂T−T0 be the marginal
density of Ẑ←T−T0

defined in (4.8), and let (M◦ TR)♯q̂T−T0 defined as (4.9). Then it follows
that

E
[
W2

2 (q0, (M◦ TR)♯q̂T−T0)
]
≤ Cε log3

(1
ε

)
,

provided that the truncation radius R, the terminal time T , the step size h, the number of
steps K, the error of reference score εref , the number of samples n for Doob’s matching, and
the early-stopping time T0 are set, respectively, as

R ≍ log
1
2

(1
ε

)
, T ≍ log

( 1
ε2

)
, K ≳

1
ε4 log2

( 1
ε2

)
, h ≲ ε4 log−1

( 1
ε2

)
ε2

ref ≲ ε2 log−1
( 1
ε2

)
, n ≳

1
ε3(d+8) log

d+8
2

( 1
ε2

)
.

Here C is a constant depending only on d, B̄, and B.

The proof of Theorem 5.6 is deferred to Appendix E. This theorem establishes a non-
asymptotic convergence rate for the controllable diffusion model (4.8) using the variationally
stable Doob’s matching (4.6). Crucially, it provides theoretical guidance for selecting hyper-
parameters, including the truncation radius R in (4.9), the step size h, the number of steps
K in (4.8), the early stopping time T0, the terminal time T , the reference score error εref
(Assumption 3), and the sample size n for Doob’s matching in (4.4).

However, this rate suffers from the curse of dimensionality (CoD), implying that the
required number of samples n grows exponentially as the error tolerance ε decays. We address
this challenge in the remainder of this section under a low-dimensional subspace assumption.
5.4 Adaptivity to low-dimensionality. In this subsection, we demonstrate that the
convergence rate mitigates the curse of dimensionality under a low-dimensional subspace
assumption, a setting previously explored in Chen et al. (2023b, Section 3) and Oko et al.
(2023, Section 6).
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Assumption 4 (Low-dimensional subspace). Let d∗ ≪ d be an integer, and P ∈ Rd×d∗ be a
column orthogonal matrix, i.e., P⊤P = Id∗ . Let p̄0 be a probability density with a compact
support contained within a hypercube {x̄0 ∈ Rd∗ : ∥x̄0∥∞ ≤ 1}. The reference density p0 is a
push-forward of p̄0 by the linear map P, i.e., p0 := P♯p̄0.

Consequently, the reference density p0 is supported on a linear subspace {Px̄0 ∈ Rd :
x̄0 ∈ Rd∗} with an ambient dimension d, and a much smaller intrinsic dimension d∗ ≪ d.

Before proceeding, we define the forward and time-reversal process in the low-dimensional
latent space. Analogously to (2.1), the forward process reads

dX̄t = −X̄t dt+
√

2 dB̄t, t ∈ (0, T ), X̄0 ∼ p̄0,

where B̄t is a d∗-dimensional standard Brownian motion, and T > 0 is the terminal time.
The transition distribution of this forward process is given by:

(5.3) (X̄t|X̄0 = x̄0) ∼ N (µtx̄0, σ
2
t Id∗).

Let p̄t denote the marginal density of X̄t for t ∈ (0, T ). The corresponding time-reversal
process (Anderson, 1982) is defined as

dX̄←t = (X̄←t + 2∇ log p̄T−t(X̄←t )) dt+
√

2 dB̄t, t ∈ (0, T ),
X̄←0 ∼ p̄T .

As shown by Anderson (1982), the path measure of the time-reversal process (X̄←t )0≤t≤T

corresponds exactly to the reverse of the forward process (X̄t)0≤t≤T .
The following result establishes a relationship between the ground-truth Doob’s h-

function (3.7) and its analogue h̄∗t : Rd∗ → R in the low-dimensional latent space. In other
words, it provides a low-dimensional representation of the ground-truth Doob’s h-function.

Proposition 5.7 (Low-dimensional representation). Suppose Assumptions 4 and 2 hold.
Then for any t ∈ (0, T ) and x ∈ Rd, we have

(5.4) h∗t (x) = h̄∗t (P⊤x) := E[w(PX̄←T ) | X̄←t = P⊤x].

The proof of Proposition 5.7 is provided in Appendix F. Proposition 5.7 implies that
estimating the ground-truth Doob’s h-function reduces to estimating its low-dimensional
counterpart h̄∗t : Rd∗ → R, thereby enabling the Doob’s guidance estimator to adapt to
low-dimensional structures.

Analogously to Proposition 5.1, we can establish the regularity properties of the low-
dimensional representation of Doob’s h-function h̄∗t : Rd∗ → R in (5.4).

Proposition 5.8. Suppose Assumptions 4 and 2 hold. Then for all t ∈ (0, T ) and x̄ ∈ Rd∗,
the following bounds hold:

(i) B ≤ h̄∗t (x̄) ≤ B̄;
(ii) max1≤k≤d |Dkh̄

∗
t (x̄)| ≤ 2σ−2

T−tB̄; and

(iii) max1≤k,ℓ≤d |D2
kℓh̄
∗
t (x̄)| ≤ 6σ−4

T−tB̄,

where Dk and D2
kℓ denote the first-order and second-order partial derivatives with respect to

the input coordinates, respectively.
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The proof of Proposition 5.7 is provided in Appendix F. Based on these results, we derive
the convergence rates for the variationally stable Doob’s matching under the assumption of
low-dimensional subspace.

Theorem 5.9 (Adaptivity to intrinsic dimension). Suppose Assumptions 4 and 2 hold. Let
t ∈ (0, T ). Set the hypothesis class Ht as

(5.5) Ht :=

ht ∈ N(L, S) :
sup

x∈Rd

ht(x) ≤ B̄, inf
x∈Rd

ht(x) ≥ B,

max
1≤k≤d

sup
x∈Rd

|Dkht(x)| ≤ 2σ−2
T−tB̄

 ,

where L = O(logn) and S = O(n
d∗

d∗+8 ). Let ĥλ
t be the gradient-regularized empirical risk

minimizer defined as (4.6), and let h∗t be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

E
[
∥∇ log ĥλ

t −∇ log h∗t ∥2L2(pT −t)

]
≤ Cσ−8

T−tn
− 2

d∗+8 log4 n,

provided that the regularization parameter λ is set as λ = O(n−
2

d∗+8 ), where C is a constant
depending only on d∗, B̄, and B.

The proof of Theorem 5.9 is provided in Appendix F. This result confirms that the
convergence rate eliminates the exponential dependence on the ambient dimension d, scaling
exponentially solely with the intrinsic dimension d∗ ≪ d. This effectively mitigates the curse
of dimensionality in Theorem 5.3.

The following corollary is a direct consequence of Theorem 5.9, derived using arguments
similar to those in Theorem 5.6.

Corollary 5.10. Suppose Assumptions 4, 2, and 3 hold. Let ε ∈ (0, 1). Set the hypothesis
classes {HT−kh}K=1

k=0 as (5.2) with the same depth L and number of non-zero parameters
S as Theorem 5.3. Let q̂T−T0 be the marginal density of Ẑ←T−T0

defined in (4.8), and let
(M◦ TR)♯q̂T−T0 defined as (4.9). Then it follows that

E
[
W2

2 (q0, (M◦ TR)♯q̂T−T0)
]
≤ Cε log3

(1
ε

)
.

provided that the truncation radius R, the terminal time T , the step size h, the number of
steps K, the error of reference score εref , the number of samples n for Doob’s matching, and
the early-stopping time T0 are set, respectively, as

R ≍ log
1
2

(1
ε

)
, T ≍ log

( 1
ε2

)
, K ≳

1
ε4 log2

( 1
ε2

)
, h ≲ ε4 log−1

( 1
ε2

)
ε2

ref ≲ ε2 log−1
( 1
ε2

)
, n ≳

1
ε3(d∗+8) log

d+8
2

( 1
ε2

)
.

Here C is a constant depending only on d∗, d, B̄, and B.

Crucially, the convergence rates in Corollary 5.10 depend only polynomially on the
ambient dimension d, while the sample complexity depends exponentially solely on the
intrinsic dimension d∗ ≪ d. This result significantly mitigates the curse of dimensionality.
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Remark 5.11. Adaptivity to low dimensionality plays a pivotal role in the analysis of diffusion
and flow-based models. One line of work studies the adaptivity of score or velocity estimator
to low dimensionality under Assumption 4 or its variants; see e.g., Chen et al. (2023b); Oko
et al. (2023); Yakovlev and Puchkin (2025a); Ding et al. (2025a). A second line of work
focuses on the adaptivity of the sampling procedure; see e.g., Li and Yan (2024); Huang
et al. (2024); Potaptchik et al. (2025). These works provide valuable insights for extending
Corollary 5.10 to achieve provable adaptivity across reference score estimation, sampling, and
guidance estimation, thereby completely eliminating dependence on the ambient dimension.
We leave this unified analysis, which is outside the scope of the current work, for future
research. Importantly, even within the current framework, the dependence on the ambient
dimension d remains only polynomial.

6 Conclusions
In this work, we proposed variationally stable Doob’s matching, a principled inference-time

alignment framework for diffusion models grounded in the theory of Doob’s h-transform.
Our approach reformulates guidance as the gradient of the logarithm of an underlying
Doob’s h-function, providing a mathematically consistent mechanism for tilting a pre-trained
diffusion model toward a target distribution without retraining the reference score network.
By leveraging gradient-regularized regression, Doob’s matching simultaneously estimates both
the h-function and its gradient, thereby providing a consistent estimator for Doob’s guidance.

From a theoretical perspective, we established non-asymptotic convergence rates for the
proposed guidance estimator, showing that the estimated Doob’s guidance converges to the
true guidance under suitable choices of the hypothesis class and regularization parameter.
Building on this result, we further derived non-asymptotic convergence guarantees for the
induced controllable diffusion process, demonstrating that the generated distribution converges
to the target distribution in the 2-Wasserstein distance. These results provide an end-
to-end theoretical guarantees for inference-time aligned diffusion models that explicitly
account for guidance estimation error, reference score estimation error, initialization bias, and
discretization error. Furthermore, we show that our convergence rates depend solely on the
intrinsic dimension of the linear subspace rather than the ambient dimension. This highlights
the estimator’s adaptivity to low-dimensional structures, effectively mitigating the curse of
dimensionality.
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A Derivations in Section 3
Lemma A.1. The Doob’s h-transform h∗(t,X←t ) defined as (3.7) is a martingale, and
satisfies the following SDE:

dh∗(t,X←t ) = ∇h∗(t,X←t )⊤
√

2 dBt.

Proof of Lemma A.1. This proof is divided into two parts.
Part 1. Martingale. Due to the Markov property of the diffusion process X←t (Øksendal,
2003, Theorem 7.1.2), using (3.7) implies

Mt := h∗(t,X←t ) = EP[w(X←T )|Ft].

It is apparent that Mt is Ft-measurable for each t ∈ (0, T ), thus Mt is adapted to F. Then
we show that Mt is integrable under P. Indeed,

EP[|Mt|] ≤ EP[EP[|w(X←T )||Ft]] = EP[w(X←T )] = Z <∞,

where the first inequality holds from Jensen’s inequality, and the first equality used the law
of total expectation and the fact that w(X←T ). We next show the martingale property. For
each 0 ≤ s ≤ t ≤ T ,

EP[Mt|Fs] = EP[EP[w(X←T )|Ft]|Fs] = EP[w(X←T )|Fs] = Ms,

where the second equality involves the tower property of conditional expectation, and the
fact that Fs ⊆ Ft. Therefore, Mt is a martingale.
Part 2. Stochastic dynamics. Applying Itô’s formula to h∗(t,X←t ) yields

dh∗(t,X←t ) = ∂th
∗(t,X←t ) dt+∇h∗(t,X←t )⊤ dX←t + 1

2( dX←t )⊤∇2h∗(t,X←t ) dX←t

= ∇h∗(t,X←t )⊤
√

2 dBt,

where the last equality holds from the fact that martingale has zero drift. This completes the
proof.
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Proposition 3.1. The Radon-Nikodym derivative process Lt, as defined in (3.5), admits the
following representation:

Lt = EP
[ dQ

dP

∣∣∣Ft

]
= h∗(t,X←t )
EP[w(X←T )] ,

where h∗ : [0, T ] ×Rd → R, referred to as Doob’s h-function, is defined as the conditional
expectation of the terminal weight:

h∗(t,x) := EP[w(X←T ) | X←t = x].

Furthermore, the log-likelihood ratio satisfies the following SDE:

d(logLt) = ∇ log h∗(t,X←t )⊤
√

2 dBt − ∥∇ log h∗(t,X←t )∥22 dt.

Proof of Proposition 3.1. The proof is divided into three parts.
Part 1. The equivalent definition of Lt. In this part, we aim to show the conditional
expectation in Proposition 3.1 is identical to the likelihood Lt defined as (3.5). Define

L̄t = EP
[ dQ

dP

∣∣∣Ft

]
.

For each event A ∈ Ft ⊆ FT , we have

Q(A) =
∫

A

dQ
dP dP =

∫
A
E

[ dQ
dP

∣∣∣Ft

]
dP =

∫
A
L̄t dP,

where the second equality is due to A ∈ Ft. This means L̄t acts as the density for the measure
Q with respect to P when restricting to the σ-algebra Ft. Thus Lt ≡ L̄t for each t ∈ (0, T ).
Part 2. The expression of Doob’s h-transform. It is straightforward that

Lt = EP
[ dQ

dP

∣∣∣Ft

]
= E

P[w(X←T )|Ft]
EP[w(X←T )] = E

P[w(X←T )|X←t ]
EP[w(X←T )] = h∗(t,X←t )

EP[w(X←T )] ,

where the second equality follows from (3.6), the third equality involves the Markovity of the
diffusion process X←t , and the last equality is due to the definition of the h-function (3.7).
Part 3. The stochastic dynamics of log-likelihood. We can now derive the dynamics of the
likelihood Lt. Letting Z = EP[w(X←T )], we have:

dLt = 1
Z

dh∗(t,X←t )

= 1
Z

(∇h∗(t,X←t ))⊤
√

2 dBt

= h∗(t,X←t )
Z

∇h∗(t,X←t )⊤

h∗(t,X←t )
√

2 dBt

= Lt(∇ log h∗(t,X←t ))⊤
√

2 dBt,(A.1)

where the second equality is due to Lemma A.1. Using Itô’s formula for log-likelihood yields

d(logLt) = dLt

Lt
− 1

2
〈 dLt

Lt
,

dLt

Lt

〉
=
√

2∇ log h∗(t,X←t )⊤ dBt −
1
2∥
√

2∇ log h∗(t,X←t )∥22 dt

=
√

2∇ log h∗(t,X←t )⊤ dBt − ∥∇ log h∗(t,X←t )∥22 dt,

where the second equality is due to (A.1). This completes the proof.
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Proposition 3.2. Let the reference process X←t satisfy the SDE (2.3) under the path measure
P, and let Q be the target path measure defined by (3.6). Assume that the Novikov condition
holds:

EP
[

exp
( ∫ T

0
∥∇ log h∗(s,X←s )∥22 ds

)]
<∞.

Define a process (B̃t)1≤t≤T by

dB̃t = dBt −
√

2∇ log h∗(t,X←t ) dt,

where Bt is a Brownian motion under P. Then B̃t is a standard Brownian motion under Q.
Further, under the path measure Q, the reference process X←t in (2.3) evolves according to:

dX←t = (X←t + 2∇ log pT−t(X←t ) + 2∇ log h∗(t,X←t )) dt+
√

2 dB̃t.

Proof of Proposition 3.2. The derivation proceeds in two steps.
Step 1. The Brownian motion under the target path measure Q. Using Proposition 3.1 and
noting that L0 ≡ 1 as (3.6), we have

Lt = exp
( ∫ t

0
∇ log h∗(s,X←s )⊤

√
2 dBs − ∥∇ log h∗(s,X←s )∥22 ds

)
.

According to Karatzas and Shreve (1998, Corollary 5.13), the Novikov condition (3.8) implies
that Lt is a martingale. Then applying Girsanov’s theorem (Øksendal, 2003, Theorem 8.6.6)
yields that B̃t is a Brownian motion under Q.
Step 2. Dynamics under the target path measure. Recall that under the reference path
measure P, the process evolves as

dX←t = (X←t + 2∇ log pT−t(X←t )) dt+
√

2 dBt,

where Bt is a P-Brownian motion. Substituting the relationship (3.9) into this SDE implies

dX←t = (X←t + 2∇ log pT−t(X←t )) dt+
√

2( dB̃t +
√

2∇ log h∗(t,X←t ) dt)
= (X←t + 2∇ log pT−t(X←t ) + 2∇ log h∗(t,X←t )) dt+

√
2 dB̃t,

which is the dynamics of X←t under the target path measure Q. This completes the proof.

B Derivations in Section 4
Proposition 4.1. For every t ∈ (0, T ), the Doob’s h-function h∗t in (3.7) minimizes the
implicit Doob’s matching loss (4.1). Further,

Jt(ht) = EP
[
∥ht(X←t )− h∗t (X←t )∥22

]
+ V 2

t ,

where V 2
t := EP[Var(w(X←T )|X←t )] is a constant independent of ht.

Proof of Proposition 4.1. By a direct calculation, we have

(B.1)

Jt(ht) = EP
[
∥ht(X←t )− w(X←T )∥22

]
= EP

[
∥ht(X←t )− h∗t (X←t ) + h∗t (X←t )− w(X←T )∥22

]
= EP

[
∥ht(X←t )− h∗t (X←t )∥22] + EP

[
∥h∗t (X←t )− w(X←T )∥22

]
+ 2EP

[
⟨ht(X←t )− h∗t (X←t ), h∗t (X←t )− w(X←T )⟩

]
,
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where h∗t is defined as (3.7). For the second term in (B.1), we have

EP
[
∥h∗t (X←t )− w(X←T )∥22

]
= EP

[
∥EP[w(X←T )|X←t ]− w(X←T )∥22

]
= EPEP

[
∥EP[w(X←T )|X←t ]− w(X←T )∥22|X←t

]
= EP[Var(w(X←T )|X←t )],(B.2)

where the first equality holds from the definition of h∗t (3.7), and the second equality is due
to the law of the total expectation. For the third term in (B.1), we find

EP
[
⟨ht(X←t )− h∗t (X←t ), h∗t (X←t )− w(X←T )⟩

]
= EP

[
⟨ht(X←t )− EP[w(X←T )|X←t ],EP[w(X←T )|X←t ]− w(X←T )⟩

]
= EP

[
⟨ht(X←t )− EP[w(X←T )|X←t ],EP[w(X←T )|X←t ]− EP[w(X←T )|X←t ]⟩

]
= 0,(B.3)

where the first equality holds from the definition of h∗t (3.7), and the second equality is due
to the law of the total expectation. Substituting (B.2) and (B.3) into (B.1) completes the
proof.

Lemma B.1. Suppose Assumptions 1 and 2 hold. Assume that vt ∈ H1(pT−t). Then

−(∇h∗t ,∇vt)L2(pT −t) = (∆h∗t +∇h∗t · ∇ log pT−t, vt)L2(pT −t).

Proof of Lemma B.1. We first construct a sequence of cut-off functions {ψk}∞k=1 ⊆ C∞0 (Rd),
satisfying

(i) ψk(x) = 1 for ∥x∥2 ≤ k,
(ii) ψk(x) = 0 for ∥x∥2 ≥ 2k,
(iii) ψk(x) ∈ (0, 1) for x ∈ Rd, and
(iv) ∥∇ψk(x)∥2 ≤ Ck−1 for some constant C independent of x and k.

See Brezis (2011, Theorem 8.7) for a detailed construction of such cut-off functions. Then we
focus on the compactly supported approximations {ψkvt}∞k=1:

− ⟨∇h∗t ,∇(ψkvt)⟩L2(pT −t)

= −
∫
Rd
⟨∇h∗t (x),∇(ψkvt)(x)⟩pT−t(x) dx

= −
∫
Rd
∇ · (∇h∗t (x)pT−t(x)(ψkvt)(x)) dx +

∫
Rd
∇ · (∇h∗t (x)pT−t(x))(ψkvt)(x) dx

=
∫
Rd
∇ · (∇h∗t (x)pT−t(x))(ψkvt)(x) dx,(B.4)

where we used the Gauss’s divergence theorem and the fact that ψkvt ∈ H1
0 (B(0, k)) with

B(0, k) := {x : ∥x∥2 ≤ k}. For the left-hand side of (B.4), we have∫
Rd
⟨∇h∗t (x),∇(ψkvt)(x)⟩pT−t(x) dx

=
∫
Rd
ψk(x)⟨∇h∗t (x),∇vt(x)⟩pT−t(x) dx +

∫
Rd
⟨∇h∗t (x),∇ψk(x)⟩vt(x)pT−t(x) dx.(B.5)

33



Chang, Duan, Jiao, Xu, and Yang

For the second term in (B.5), we have∣∣∣ ∫
Rd
⟨∇h∗t (x),∇ψk(x)⟩vt(x)pT−t(x) dx

∣∣∣
≤

∫
Rd
∥∇h∗t (x)∥2∥∇ψk(x)∥2|vt(x)|pT−t(x) dx

≤ C

k

∫
Rd
∥∇h∗t (x)∥2|vt(x)|pT−t(x) dx

≤ C

k
∥∇h∗t ∥L2(pT −t)∥vt∥L2(pT −t),

where the second inequality holds from the definition of the cut-off function, and the last
inequality is due to Cauchy-Schwarz inequality and the fact that h∗t ∈ H1(pT−t), which is
a direct conclusion of Lemmas C.1 and C.4. Taking limitation with respect to k →∞ and
using Lebesgue’s dominated convergence theorem yields

(B.6) lim
k→∞

∫
Rd
⟨∇h∗t (x),∇ψk(x)⟩vt(x)pT−t(x) dx = 0.

Combining (B.4), (B.5), and (B.6) and taking limitation with respect to k →∞ completes
the proof.

Proposition 4.2. Let λ > 0, h∗t be the Doob’s h-function defined as (3.7), and hλ
t be the

minimizer of J λ
t defined as (4.3). Then h∗t ∈ H2(pT−t), and

∥hλ
t − h∗t ∥2L2(pT −t) ≤ λ

2∥∆h∗t +∇h∗t · ∇ log pT−t∥2L2(pT −t),

∥∇hλ
t −∇h∗t ∥2L2(pT −t) ≤ λ∥∆h

∗
t +∇h∗t · ∇ log pT−t∥2L2(pT −t).

Proof of Proposition 4.2. First, h∗t ∈ H2(pT−t) is a direct conclusion of Lemmas C.1, C.4,
and C.5. It remains to prove two inequalities. Using Proposition 4.1 and (4.3), we have

J λ
t (ht) = ∥ht − h∗t ∥2L2(pT −t) + V 2

t + λ∥∇ht∥2L2(pT −t)

Since hλ
t is the minimizer of J λ

t , the methods of variation imply that for any vt ∈ H1(pT−t),

δJ λ
t (hλ

t , vt) = ⟨hλ
t − h∗t , vt⟩L2(pT −t) + λ⟨∇hλ

t ,∇vt⟩L2(pT −t) = 0,

which implies

⟨hλ
t − h∗t , vt⟩L2(pT −t) + λ⟨∇hλ

t −∇h∗t ,∇vt⟩L2(pT −t)

= −λ⟨∇h∗t ,∇vt⟩L2(pT −t)

= λ⟨∆h∗t +∇h∗t · ∇ log pT−t, vt⟩L2(pT −t),

where the last equality invokes Lemma B.1. Substituting vt := hλ
t − h∗t yields

∥hλ
t − h∗t ∥2L2(pT −t) + λ∥∇hλ

t −∇h∗t ∥2L2(pT −t)

= λ⟨∆h∗t +∇h∗t · ∇ log pT−t, h
λ
t − h∗t ⟩L2(pT −t)

≤ λ∥∆h∗t +∇h∗t · ∇ log pT−t∥L2(pT −t)∥hλ
t − h∗t ∥L2(pT −t),(B.7)
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where the last inequality is due to Cauchy-Schwarz inequality. A direct conclusion is

∥hλ
t − h∗t ∥2L2(pT −t) ≤ λ

2∥∆h∗t +∇h∗t · ∇ log pT−t∥2L2(pT −t).

Then plugging this equality into (B.7) yields

∥∇hλ
t −∇h∗t ∥2L2(pT −t) ≤ λ∥∆h

∗
t +∇h∗t · ∇ log pT−t∥2L2(pT −t),

which completes the proof.

Proposition 4.3. Let λ > 0, and hλ
t be the minimizer of J λ

t defined as (4.3). Then for any
ht ∈ H1(pT−t), we have

1
max{λ, 1}

{
J λ

t (ht)− J λ
t (hλ

t )
}
≤ ∥ht − hλ

t ∥2H1(pT −t) ≤
1

min{λ, 1}
{
J λ

t (ht)− J λ
t (hλ

t )
}
.

Proof of Proposition 4.3. Using Proposition 4.1 and (4.3), we have

J λ
t (ht) = ∥ht − h∗t ∥2L2(pT −t) + V 2

t + λ∥∇ht∥2L2(pT −t).

Since hλ
t is the minimizer of J λ

t , the methods of variation imply

(B.8) δJ λ
t (hλ

t , vt) = ⟨hλ
t − h∗t , vt⟩L2(pT −t) + λ⟨∇hλ

t ,∇vt⟩L2(pT −t) = 0,

for any vt ∈ H1(pT−t). A direct calculation yields

J λ
t (ht) = J λ

t (ht − hλ
t + hλ

t )
= ∥ht − hλ

t + hλ
t − h∗t ∥2L2(pT −t) + V 2

t + λ∥∇ht −∇hλ
t +∇hλ

t ∥2L2(pT −t)

= J λ
t (hλ

t ) + ∥ht − hλ
t ∥2L2(pT −t) + λ∥∇ht −∇hλ

t ∥2L2(pT −t)

+ 2⟨ht − hλ
t , h

λ
t − h∗t ⟩L2(pT −t) + 2λ⟨∇ht −∇hλ

t ,∇hλ
t ⟩L2(pT −t)

= J λ
t (hλ

t ) + ∥ht − hλ
t ∥2L2(pT −t) + λ∥∇ht −∇hλ

t ∥2L2(pT −t),

where the last equality holds from (B.8). This completes the proof.

C Derivations in Section 5.1
Lemma C.1. Suppose Assumption 2 holds. Then for all t ∈ (0, T ),

B ≤ h∗t (x) ≤ B̄, x ∈ Rd.

Proof of Lemma C.1. A direct conclusion of Assumption 2 and the definition of Doob’s
h-function h∗t (3.7).

Lemma C.2 (Tweedie’s formula). Let t ∈ (0, T ), and let Xt be defined as (2.1). Then

∇ log pt(x) + x
σ2

t

= µt

σ2
t

E[X0|Xt = x], x ∈ Rd.
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Proof of Lemma C.2. It is straightforward that

∇ log pt(x) = ∇pt(x)
pt(x)

= 1
pt(x)

∫
∇xφd(x;µtx0, σ

2
t Id)p0(x0) dx0

= − 1
pt(x)

∫ (x− µtx0
σ2

t

)
φd(x;µtx0, σ

2
t Id)p0(x0) dx0

= − 1
pt(x)

x
σ2

t

∫
φd(x;µtx0, σ

2
t Id)p0(x0) dx0

+ µt

σ2
t

∫
x0φd(x;µtx0, σ

2
t Id)p0(x0)

pt(x) dx0

= − x
σ2

t

+ µt

σ2
t

E[X0|Xt = x],

where the second equality is due to (2.2), and last equality invokes the Bayes’ rule. This
completes the proof.

Lemma C.3. Let g : Rd → Rd be an integrable function. Let t ∈ (0, T ), and let Xt be
defined as (2.1). Then for each x ∈ Rd,

∇xE[g(X0)|Xt = x] = µt

σ2
t

Cov(X0, g(X0)|Xt = x),

where the k-th entry of Cov(X0, g(X0)|Xt = x) is defined as Cov(X0,k, g(X0)|Xt = x) with
X0 = (X0,1, . . . , X0,d).

Proof of Lemma C.3. According to Bayes’ rule, we have

E[g(X0)|Xt = x] = 1
pt(x)

∫
g(x0)φd(x;µtx0, σ

2
t Id)p0(x0) dx0.

Taking gradient with respect to x on both sides of the equality yields

∇xE[g(X0)|Xt = x] = 1
pt(x)

∫
g(x0)∇xφd(x;µtx0, σ

2
t Id)p0(x0) dx0

− ∇pt(x)
p2

t (x)

∫
g(x0)φd(x;µtx0, σ

2
t Id)p0(x0) dx0

= − 1
pt(x)

∫
g(x0)

(x− µtx0
σ2

t

)
φd(x;µtx0, σ

2
t Id)p0(x0) dx0

− ∇ log pt(x)
pt(x)

∫
g(x0)φd(x;µtx0, σ

2
t Id)p0(x0) dx0

= −
(
∇ log pt(x) + x

σ2
t

) ∫
g(x0)φd(x;µtx0, σ

2
t Id)p0(x0)

pt(x) dx0

+ µt

σ2
t

∫
x0g(x0)φd(x;µtx0, σ

2
t Id)p0(x0)

pt(x) dx0

= µt

σ2
t

(−E[X0|Xt = x]E[g(X0)|Xt = x] + E[X0g(X0)|Xt = x])

= µt

σ2
t

Cov(X0, g(X0)|Xt = x),
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where the fourth equality follows from Lemma C.2 and the Bayes’ rule. Here the k-th entry
of the conditional covariance Cov(X0, g(X0)|Xt = x) is defined as Cov(X0,k, g(X0)|Xt = x),
where X0 = (X0,1, . . . , X0,d). This completes the proof.

Lemma C.4. Suppose Assumptions 1 and 2 hold. Then for each x ∈ Rd and t > 0,

max
1≤k≤d

|Dkh
∗
t (x)| ≤ 2B̄

σ2
T−t

,

where Dk denote the differential operator with respect to the k-th entry of x.
Proof of Lemma C.4. According to the definition of Doob’s h-function h∗t (3.7) and the
property of the time-reversal process (2.3), we have

h∗(t,x) := EP[w(X←T )|X←t = x] = E[w(X0)|XT−t = x],

where the second expectation is with respect to the path measure of the forward process (2.1).
Then it follows from Lemma C.3 that

∇h∗t (x) = µT−t

σ2
T−t

Cov(X0, w(X0)|XT−t = x).(C.1)

Then it follows from Assumptions 1 and 2 that for each x ∈ Rd,

(C.2) ∥Cov(X0, w(X0)|XT−t = x)∥∞ = max
1≤k≤d

Cov(X0,k, w(X0)|XT−t = x) ≤ 2B̄.

Substituting (C.2) into (C.1) yields

∥∇h∗t (x)∥∞ = µt

σ2
t

∥Cov(X0, w(X0)|XT−t = x)∥∞ ≤
2B̄
σ2

T−t

,

where we used the fact that µt = exp(−t) < 1. This completes the proof.

Lemma C.5. Suppose Assumptions 1 and 2 hold. Then for each x ∈ Rd and t > 0,

|D2
kℓh
∗
t (x)| ≤ 6B̄

σ4
T−t

,

where D2
kℓ denote the second-order differential operator with respect to k-th and ℓ-th entry.

Proof of Lemma C.5. Taking derivative with respect to the ℓ-th entry of x on both sides
of (C.1) implies

(C.3) D2
kℓh
∗
t (x) = µT−t

σ2
T−t

DℓCov(X0,k, w(X0)|XT−t = x).

It remains to estimate the derivative of the conditional covariance. Indeed,

DℓCov(X0,k, w(X0)|XT−t = x)
= DℓE[X0,k|XT−t = x]E[w(X0)|XT−t = x]

+ E[X0,k|XT−t = x]DℓE[w(X0)|XT−t = x]
−DℓE[X0,kw(X0)|XT−t = x]

= µT−t

σ2
T−t

Cov(X0,ℓ, X0,k|Xt = x)E[w(X0)|XT−t = x]

+ E[X0,k|XT−t = x]µT−t

σ2
T−t

Cov(w(X0), X0,ℓ|XT−t = x)

− µT−t

σ2
T−t

Cov(X0,kw(X0), X0,ℓ|XT−t = x),
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where the last equality holds from Lemma C.3. Concequently, for each x ∈ Rd and t > 0,

(C.4) |DℓCov(X0,k, w(X0)|XT−t = x)| ≤ 6µT−tB̄

σ2
T−t

,

where we used Assumptions 1 and 2. Substituting (C.4) into (C.3) completes the proof.

Proposition 5.1. Suppose Assumptions 1 and 2 hold. Then for all t ∈ (0, T ) and x ∈ Rd,
the following bounds hold:

(i) B ≤ h∗t (x) ≤ B̄;
(ii) max1≤k≤d |Dkh

∗
t (x)| ≤ 2σ−2

T−tB̄; and
(iii) max1≤k,ℓ≤d |D2

kℓh
∗
t (x)| ≤ 6σ−4

T−tB̄,

where Dk and D2
kℓ denote the first-order and second-order partial derivatives with respect to

the input coordinates, respectively.

Proof of Proposition 5.1. A direct conclusion of Lemmas C.1, C.4, and C.5.

D Derivations in Section 5.2
D.1 Oracle inequality of variationally stable Doob’s matching.

Lemma 5.2. Suppose Assumptions 1 and 2 hold. Let t ∈ (0, T ) and let Ht be a hypothesis
class. Let ĥλ

t be the gradient-regularized empirical risk minimizer defined as (4.6), and let h∗t
be the Doob’s h-function defined as (3.7). Then the following inequalities hold:

E
[
∥ĥλ

t − h∗t ∥2L2(pT −t)

]
≲ inf

ht∈Ht

{
∥ht − h∗t ∥2L2(pT −t) + λ∥∇ht −∇h∗t ∥2L2(pT −t)

}
+ B̄2

(VCdim(Ht)
n log−1 n

) 1
2 + λdB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2 + λ2dB̄2

σ8
T−t

,

E
[
∥∇ĥλ

t −∇h∗t ∥2L2(pT −t)

]
≲ inf

ht∈Ht

{ 1
λ
∥ht − h∗t ∥2L2(pT −t) + ∥∇ht −∇h∗t ∥2L2(pT −t)

}
+ B̄2

λ

(VCdim(Ht)
n log−1 n

) 1
2 + dB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2 + λdB̄2

σ8
T−t

,

where the notation ≲ hides absolute constants.

Proof of Lemma 5.2. It follows from Proposition 4.3 and Lemma D.1 that

E
[
∥ĥλ

t − hλ
t ∥2L2(pT −t)

]
+ λE

[
∥∇ĥλ

t −∇hλ
t ∥2L2(pT −t)

]
= E

[
J λ

t (ĥλ
t )− J λ

t (hλ
t )

]
≤ inf

ht∈Ht

{
∥ht − hλ

t ∥2L2(pT −t) + λ∥∇ht −∇hλ
t ∥2L2(pT −t)

}
+ 80B̄2

(VCdim(Ht)
n log−1 n

) 1
2 + 8λdB̄

2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2

≤ inf
ht∈Ht

{
2∥ht − h∗t ∥2L2(pT −t) + 2λ∥∇ht −∇h∗t ∥2L2(pT −t)

}
+ 80B̄2

(VCdim(Ht)
n log−1 n

) 1
2 + 8λdB̄

2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2

+ 2∥h∗t − hλ
t ∥2L2(pT −t) + 2λ∥∇h∗t −∇hλ

t ∥2L2(pT −t),
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where the last inequality holds from the triangular inequality. Using the triangular inequality
again, we have

(D.1)

E
[
∥ĥλ

t − h∗t ∥2L2(pT −t)

]
+ λE

[
∥∇ĥλ

t −∇h∗t ∥2L2(pT −t)

]
≤ 2E

[
∥ĥλ

t − hλ
t ∥2L2(pT −t)

]
+ 2λE

[
∥∇ĥλ

t −∇hλ
t ∥2L2(pT −t)

]
+ 2∥h∗t − hλ

t ∥2L2(pT −t) + 2λ∥∇h∗t −∇hλ
t ∥2L2(pT −t)

≤ inf
ht∈Ht

{
4∥ht − h∗t ∥2L2(pT −t) + 4λ∥∇ht −∇h∗t ∥2L2(pT −t)

}
︸ ︷︷ ︸

approximation error

+ 160B̄2
(VCdim(Ht)

n log−1 n

) 1
2 + 16λdB̄

2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2

︸ ︷︷ ︸
generalization error

+ 6∥h∗t − hλ
t ∥2L2(pT −t) + 6λ∥∇h∗t −∇hλ

t ∥2L2(pT −t)︸ ︷︷ ︸
regularization gap

.

Combining Proposition 4.2 and Lemma D.6 yields

(D.2)
∥h∗t − hλ

t ∥2L2(pT −t) ≤ 144λ2 dB̄
2

σ8
T−t

,

∥∇h∗t −∇hλ
t ∥2L2(pT −t) ≤ 144λ dB̄

2

σ8
T−t

.

Substituting (D.2) into (D.1) completes the proof.

Lemma D.1. Suppose Assumptions 1 and 2 hold. Let t ∈ (0, T ) and let Ht be a hypothesis
class. Let ĥλ

t be the gradient-regularized empirical risk minimizer defined as (4.6). Then we
have

E
[
J λ

t (ĥλ
t )− J λ

t (hλ
t )

]
≤ inf

ht∈Ht

{
∥ht − hλ

t ∥2L2(pT −t) + λ∥∇ht −∇hλ
t ∥2L2(pT −t)

}
+ 80B̄2

(VCdim(Ht)
n log−1 n

) 1
2 + 8λdB̄

2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2
,

where the notation ≲ hides absolute constants.

Proof of Lemma D.1. For any ht ∈Ht, we have

J λ
t (ĥλ

t )− J λ
t (hλ

t )
= J λ

t (ĥλ
t )− Ĵ λ

t (ĥλ
t ) + Ĵ λ

t (ĥλ
t )− Ĵ λ

t (ht) + Ĵ λ
t (ht)− J λ

t (ht) + J λ
t (ht)− J λ

t (hλ
t )

≤ J λ
t (ĥλ

t )− Ĵ λ
t (ĥλ

t ) + Ĵ λ
t (ht)− J λ

t (ht) + J λ
t (ht)− J λ

t (hλ
t ),

where the inequality holds from that fact that ĥλ
t is the minimizer of Ĵ λ

t over the hypothesis
class Ht. Taking expectation on both sides of the inequality yields

E
[
J λ

t (ĥλ
t )− J λ

t (hλ
t )

]
= E

[
J λ

t (ĥλ
t )− Ĵ λ

t (ĥλ
t )

]
+ J λ

t (ht)− J λ
t (hλ

t )

≤ E
[

sup
ht∈Ht

J λ
t (ht)− Ĵ λ

t (ht)
]

+ J λ
t (ht)− J λ

t (hλ
t ),
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where the equality holds from E[Ĵt(ht)] = Jt(ht) for each fixed ht, and the inequality is due
to ht ∈Ht. By taking infimum on both sides of the inequality with respect to ht ∈Ht, we
have

(D.3) E
[
J λ

t (ĥλ
t )− J λ

t (hλ
t )

]
≤ E

[
sup

ht∈Ht

J λ
t (ht)− Ĵ λ

t (ht)
]

︸ ︷︷ ︸
generalization error

+ inf
ht∈Ht

{
J λ

t (ht)− J λ
t (hλ

t )
}

︸ ︷︷ ︸
approximation error

.

The rest of the proof is divided into three steps.
Step 1. Generalization error in (D.3).

For the generalization error in (D.3), we have the following decomposition:

(D.4)

E

[
sup

ht∈Ht

J λ
t (ht)− Ĵ λ

t (ht)
]

= E
[

sup
ht∈Ht

E
[
(ht(XT−t)− w(X0))2]

− 1
n

n∑
i=1

(ht(Xi
T−t)− w(Xi

0))2
]

︸ ︷︷ ︸
(G1)

+ λE

[
sup

ht∈Ht

E
[
∥∇ht(XT−t)∥22

]
− 1
n

n∑
i=1
∥∇ht(Xi

T−t)∥22

]
︸ ︷︷ ︸

(G2)

.

We start from the term (G1) in (D.4). First, recall Proposition 4.1:

(D.5) E
[
(ht(XT−t)− w(X0))2]

= E
[
(ht(XT−t)− h∗t (XT−t))2]

+ Vt.

For the empirical counterpart, it is straightforward that

− 1
n

n∑
i=1

(ht(Xi
T−t)− w(Xi

0))2

= − 1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t) + E[w(Xi
0)|Xi

T−t]− w(Xi
0))2

= − 1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))2 − 1
n

n∑
i=1

(E[w(Xi
0)|Xi

T−t]− w(Xi
0))2

− 2
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))(E[w(Xi
0)|Xi

T−t]− w(Xi
0)),

where the first equality invokes the definition of the Doob’s h-function h∗t in (3.7). Taking
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expectation with respect to {(Xi
0,Xi

T−t)}ni=1 yields

E

[
sup

ht∈Ht

E
[
(ht(XT−t)− w(X0))2]

− 1
n

n∑
i=1

(ht(Xi
T−t)− w(Xi

0))2
]

= E
[

sup
ht∈Ht

E
[
(ht(XT−t)− h∗t (XT−t))2]

− 1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))2
]

+ 2E
[

1
n

n∑
i=1

ht(Xi
T−t)(E[w(Xi

0)|Xi
T−t]− w(Xi

0))
]

≤ 64B̄2
(VCdim(Ht)

n log−1 n

) 1
2 + 16B̄2

(VCdim(Ht)
n log−1 n

) 1
2 = 80B̄2

(VCdim(Ht)
n log−1 n

) 1
2
,(D.6)

where the equality invokes (D.5), and the inequality holds from Lemmas D.2 and D.5. For
the term (G2) in (D.4), using Lemma D.3 implies

(D.7) E

[
sup

ht∈Ht

E
[
∥∇ht(XT−t)∥22

]
− 1
n

n∑
i=1
∥∇ht(Xi

T−t)∥22

]
≤ 8dB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2
.

Substituting (D.6) and (D.7) into (D.4) yields a generalization error bound:

(D.8) E

[
sup

ht∈Ht

J λ
t (ht)− Ĵ λ

t (ht)
]
≤ 80B̄2

(VCdim(Ht)
n log−1 n

) 1
2 + 8dB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2
.

Step 2. Approximation error in (D.3). According to the proof of Proposition 4.3, we have

(D.9) J λ
t (ht)− J λ

t (hλ
t ) = ∥ht − hλ

t ∥2L2(pT −t) + λ∥∇ht −∇hλ
t ∥2L2(pT −t).

Step 3. Conclusion. Substituting (D.8) and (D.9) into (D.3) completes the proof.

D.2 Auxilary lemmas for the oracle inequality. According to the standard techniques
of symmetrization (Mohri et al., 2018, Theorem 3.3), we have the following generalization
bounds. We introduce the concept of Rademacher complexity (Bartlett and Mendelson, 2002;
Mohri et al., 2018), which is crucial for analyzing the generalization error.

Definition 3 (Rademacher complexity). Let H be a function class, and let X1:n :=
(X1, . . . ,Xn) be a set of samples. The empirical Rademacher complexity of H with re-
spect to X1:n is defined as

R(H |X1:n) := E
[

sup
h∈H

1
n

n∑
i=1

εih(Xi)
∣∣∣X1:n

]
,

where ε1, . . . , εn are i.i.d. Rademacher random variables. The Rademacher complexity of H
is the expectation of empirical Rademacher complexity with respect to the distribution of
X1:n defined as

Rn(H ) := E[R̂(H |X1:n)] = E
[

sup
h∈H

1
n

n∑
i=1

εih(Xi)
]
.

Lemma D.2. Suppose Assumptions 1 and 2 hold. Then

E

[
sup

ht∈Ht

∥ht − h∗t ∥2L2(pT −t) −
1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))2
]
≤ 64B̄2

(VCdim(Ht)
n log−1 n

) 1
2
,

where the expectation is taken with respect to X1
T−t, . . . ,Xn

T−t ∼i.i.d. pT−t.
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Proof of Lemma D.2. Let X1,′
T−t, . . . ,X

n,′
T−t be independent copies of X1

T−t, . . . ,Xn
T−t. Let

ε1, . . . , εn be a set of i.i.d. Rademacher variables, which are independent of X1,′
T−t, . . . ,X

n,′
T−t

and X1
T−t, . . . ,Xn

T−t. It follows that

E

[
sup

ht∈Ht

∥ht − h∗t ∥2L2(pT −t) −
1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))2
]

≤ E
[

sup
ht∈Ht

E
[
(ht(XT−t)− h∗t (XT−t))2]

− 1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))2
]

= E
[

sup
ht∈Ht

E

[
1
n

n∑
i=1

(ht(Xi,′
T−t)− h

∗
t (Xi,′

T−t))
2
]
− 1
n

n∑
i=1

(ht(Xi
T−t)− h∗t (Xi

T−t))2
]

≤ E
[

sup
ht∈Ht

1
n

n∑
i=1

{
(ht(Xi,′

T−t)− h
∗
t (Xi,′

T−t))
2 − (ht(Xi

t)− h∗t (Xi
t))2

}]

= E
[

sup
ht∈Ht

1
n

n∑
i=1

εi

{
(ht(Xi,′

T−t)− h
∗
t (Xi,′

T−t))
2 − (ht(Xi

T−t)− h∗t (Xi
T−t))2

}]

= 2E
[

sup
ht∈Ht

1
n

n∑
i=1

εi(ht(Xi
T−t)− h∗t (Xi

T−t))2
]
≤ 8B̄Rn(Ht),(D.10)

where the second inequality holds from Jensen’s inequality, and last inequality is due to
Ledoux-Talagrand contraction inequality (Mohri et al., 2018, Lemma 5.7) and Lemma C.1.

It remains to bound the Rademacher complexity Rn(Ht) in (D.10). Let δ > 0 and H δ
t be

an L∞(X1:n
T−t) δ-cover of Ht satisfying |H δ

t | = N(δ,Ht, L
∞(X1:n

T−t)). Then for any ht ∈Ht,
there exists hδ

t ∈H δ
t such that

1
n

n∑
i=1

εiht(Xi
t)−

1
n

n∑
i=1

εih
δ
t (Xi

t) ≤ δ.

As a consequence,

R(Ht | X1:n
T−t) = E

[
sup

ht∈Ht

1
n

n∑
i=1

εiht(Xi
t) | X1:n

T−t

]

≤ E
[

sup
hδ

t∈H δ
t

1
n

n∑
i=1

εih
δ
t (Xi

t) | X1:n
T−t

]
+ δ

≤ B̄
(2 log |H δ

t |
n

) 1
2 + δ

= B̄
(2 logN(δ,Ht, L

∞(X1:n
T−t))

n

) 1
2 + δ,

where ε1, . . . , εn are a sequence of i.i.d. Rademacher variables, the second inequality follows
from Massart’s lemma (Mohri et al., 2018, Theorem 3.7), and the equality is due to the
definition of H δ

t . Then setting δ = B̄/
√
n yields

(D.11) R(Ht | X1:n
T−t) ≤ B̄

(2 logN(B/
√
n,Ht, L

∞(X1:n
T−t))

n

) 1
2 ≤ 8B̄

(VCdim(Ht)
n log−1 n

) 1
2
,

where the last inequality holds from Anthony et al. (1999, Theorem 12.2). Substituting (D.11)
into (D.10) completes the proof.
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By a similar argument as Lemma D.2, we have the following generalization bounds for
the gradient term.

Lemma D.3. Suppose Assumptions 1 and 2 hold. Then

E

[
sup

ht∈Ht

∥∇ht∥2L2(pT −t) −
1
n

n∑
i=1
∥∇ht(Xi

T−t)∥22

]
≤ 8dB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2
,

where the expectation is taken with respect to X1
T−t, . . . ,Xi

T−t ∼i.i.d. pT−t.

Proof of Lemma D.3. It is straightforward that

E

[
sup

ht∈Ht

∥∇ht∥2L2(pT −t) −
1
n

n∑
i=1
∥∇ht(Xi

T−t)∥22

]

≤
d∑

k=1
E

[
sup

ht∈Ht

∥Dkht∥2L2(pT −t) −
1
n

n∑
i=1

(Dkht(Xi
T−t))2

]

≤
d∑

k=1

8B̄2

σ4
T−t

(VCdim(DkHt)
n log−1 n

) 1
2 ≤ 8dB̄2

σ4
T−t

(VCdim(∇Ht)
n log−1 n

) 1
2
,

where the first inequality holds from the convexity of supremum and Jensen’s inequality, the
second inequality invokes a similar argument as Lemma D.2, and the last inequality holds
from the definition of VCdim(∇Ht). This completes the proof.

The following lemma is an extension of Bartlett and Mendelson (2002, Lemma 4).

Lemma D.4. Let z = (z1, . . . , zn) ∈ Z ⊆ Rn. Let ξ1, . . . , ξn be a sequence of i.i.d. random
variables with |ξi| < K and E[ξi] = 0 for each 1 ≤ i ≤ n. Then it follows that

E

[
sup
z∈Z

1
n

n∑
i=1

ξizi

]
≤ 2KE

[
sup
z∈Z

1
n

n∑
i=1

εizi

]
,

where ε1, . . . , εn is a sequence of i.i.d. Rademacher variables.

Proof of Lemma D.4. The proof relies on the symmetrization technique. Let ξ′1, . . . , ξ′n be
independent copies of ξ1, . . . , ξn. It follows that

E

[
sup
z∈Z

1
n

n∑
i=1

ξizi

]
= E

[
sup
z∈Z
E

[
1
n

n∑
i=1

(ξi − ξ′i)zi

∣∣∣∣∣ξ1, . . . , ξn

]]

≤ E
[

sup
z∈Z

1
n

n∑
i=1

(ξi − ξ′i)zi

]
= E

[
sup
z∈Z

1
n

n∑
i=1

εi(ξi − ξ′i)zi

]

≤ 2E
[

sup
z∈Z

1
n

n∑
i=1

εiξizi

]
≤ 2KE

[
sup
z∈Z

1
n

n∑
i=1

εizi

]
,

where the first equality due to E[ξ′i] = 0, the first inequality holds from Jensen’s inequality,
and the second equality follows from the fact that distribution of (ξi−ξ′i) is symmetric around
zero, so it has the same distribution as εi(ξi − ξ′i). The second inequality comes from the
triangular inequality for the supremum, and we used the fact that ξi and ξ′i are identically
distributed. The last inequality invokes Ledoux-Talagrand contraction inequality (Mohri
et al., 2018, Lemma 5.7) and max1≤i≤n |ξi| ≤ K. This completes the proof.
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Lemma D.5. Suppose Assumptions 1 and 2 hold. Then

E

[
sup

ht∈Ht

1
n

n∑
i=1

ht(Xi
T−t)(w(Xi

0)− E[w(Xi
0) | Xi

T−t]) | X1:n
T−t

]
≤ 16B̄2

(VCdim(Ht)
n log−1 n

) 1
2
,

where the expectation is taken with respect to X1
T−t, . . . ,Xi

T−t ∼i.i.d. pT−t.

Proof of Lemma D.5. Define a sequence of auxilary random variables

ξi := w(Xi
0)− E[w(Xi

0) | Xi
T−t].

It is apparent that E[ξi | Xi
T−t] = 0, and |ξi| ≤ B̄. Using Lemma D.4 yields

E

[
sup

ht∈Ht

1
n

n∑
i=1

ξiht(Xi
T−t) | X1:n

T−t

]
≤ 2B̄E

[
sup

ht∈Ht

1
n

n∑
i=1

εiht(Xi
T−t) | X1:n

T−t

]
= 2B̄R(Ht | X1:n

T−t),

where ε1, . . . , εn is a sequence of i.i.d. Rademacher variables. Here the first inequality follows
from Lemma D.4, and the second inequality is due to the fact that ĥλ

t ∈ Ht, the second
inequality holds from Lemma D.4. Finally, using (D.11) completes the proof.

Lemma D.6. Suppose Assumptions 1 and 2 hold. Then

∥∆h∗t +∇h∗t · ∇ log pT−t∥L2(pT −t) ≤
12
√
dB̄

σ4
T−t

.

Proof of Lemma D.6. By applying the triangular inequality, we have

∥∆h∗t +∇h∗t · ∇ log pT−t∥L2(pT −t)

≤ ∥∆h∗t ∥L2(pT −t) + ∥∇h∗t · ∇ log pT−t∥L2(pT −t)

≤ 6
√
dB̄

σ4
T−t

+ 2B̄
σ2

T−t

∥∇ log pT−t∥L2(pT −t),(D.12)

where the last inequality holds from Lemmas C.4 and C.5. It remains to estimate the
L2(pT−t)-norm of the score ∇ log pT−t in (D.12). Indeed,

∥∇ log pT−t∥2L2(pT −t)

=
∫
∥ x
σ2

T−t

− µT−t

σ2
T−t

E[X0|XT−t = x]∥22pT−t(x) dx

≤ 2
σ4

T−t

E
[
∥XT−t∥22

]
+

2dµ2
T−t

σ4
T−t

= 2
σ4

T−t

{
µ2

T−tE
[
∥X0∥22

]
+ 2µT−tσT−tE

[
⟨X0, ε⟩

]
+ σ2

T−tE
[
∥ε∥22

]}
+

2dµ2
T−t

σ4
T−t

= 2
σ4

T−t

{
µ2

T−tE
[
∥X0∥22

]
+ σ2

T−tE
[
∥ε∥22

]}
+

2dµ2
T−t

σ4
T−t

≤ 6d
σ4

T−t

,(D.13)

where the first equality is owing to Lemma C.2, the first inequality used Assumption 1, and
the second and third equalities hold from XT−t

d= µT−tX0 + σT−tε where X0 is independent
ε ∼ N (0, Id). The last inequality also uses Assumption 1. Substituting (D.13) into (D.12)
completes the proof.
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D.3 Convergence rate of the Doob’s guidance estimation.

Lemma D.7. Suppose Assumptions 1 and 2 hold. Let R ≥ 1, and let the hypothesis class
Ht be defined as (5.2) with L ≤ C logN and S ≤ Nd, then there exists ht ∈Ht such that

∥ht − h∗t ∥L∞(B(0,R)) ≤
CB̄R2

σ4
T−tN

2 ,

∥∇ht −∇h∗t ∥L∞(B(0,R)) ≤
CB̄R

σ4
T−tN

,

where C is a constant only depending on d.

Proof of Lemma D.7. We first rescale the target function h∗t to B(0, 1) by g∗t (z) := h∗t (Rz).
According to Ding et al. (2025b, Lemma 6), there exists gt ∈ N(L, S) such that

∥gt − g∗t ∥L∞(B(0,1)) ≤
C ′

N2 ∥g
∗
t ∥C2(Rd),

∥∇gt −∇g∗t ∥L∞(B(0,1)) ≤
C ′

N
∥g∗t ∥C2(Rd),

where C ′ is a constant only depending on d. Note that Dkg
∗
t (z) = RDkh

∗
t (Rz) for each

1 ≤ k ≤ d, and D2
kℓg
∗
t (z) = R2D2

kℓh
∗
t (Rz) for each 1 ≤ k, ℓ ≤ d. Thus

∥gt(R−1·)− h∗t ∥L∞(B(0,R)) = ∥gt(R−1·)− g∗t (R−1·)∥L∞(B(0,1)) ≤
C ′R2

N2 ∥h
∗
t ∥C2(Rd),

∥∇gt(R−1·)−∇h∗t ∥L∞(B(0,R)) = 1
R
∥∇gt(R−1·)−∇g∗t (R−1·)∥L∞(B(0,1)) ≤

C ′R

N
∥h∗t ∥C2(Rd).

Setting ht := gt(R−1·), and using Lemmas C.1, C.4, and C.5 complete the proof.

Lemma D.8 (Approximation error). Suppose Assumptions 1 and 2 hold. Let R ≥ 1, and let
the hypothesis class Ht be defined as (5.2) with L ≤ C logN and S ≤ Nd, then

∥ht − h∗t ∥2L2(pT −t) ≤ C
B̄2 log4N

σ8
T−tN

4 ,

∥∇ht −∇h∗t ∥2L2(pT −t) ≤ C
B̄2 log2N

σ8
T−tN

2 .

provided that R2 = (4dµ2
t + 8σ2

t ) logN4, where C is a constant only depending on d.

Proof of Lemma D.8. It is straightforward that for each R ≥ 1,

(D.14)

∥ht − h∗t ∥2L2(pT −t) =
∫

(ht(x)− h∗t (x))2
1{∥x∥2 ≤ R}pT−t(x) dx︸ ︷︷ ︸

(i)

+
∫

(ht(x)− h∗t (x))2
1{∥x∥2 > R}pT−t(x) dx︸ ︷︷ ︸

(ii)

.
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For term (i) in (D.14), we have∫
(ht(x)− h∗t (x))2

1{∥x∥2 ≤ R}pT−t(x) dx

≤ sup
∥x∥2≤R

(ht(x)− h∗t (x))2 ≤ C2B̄2R4

σ8
T−tN

4 ,(D.15)

where the second inequality holds from Lemma D.7. For term (ii) in (D.14), we have∫
∥ht(x)− h∗t (x)∥221{∥x∥2 > R}pT−t(x) dx

≤ 4B̄2 Pr{∥XT−t∥2 > R} ≤ 2d+3B̄2 exp
(
− R2

4dµ2
t + 8σ2

t

)
,(D.16)

where the first inequality holds from Lemma C.1, and the second inequality is due to
Lemma G.1. Substituting (D.15) and (D.16) into (D.14) yields

(D.17) ∥ht − h∗t ∥2L2(pT −t) ≤
C2B̄2R4

σ8
T−tN

4 + 2d+3B̄2 exp
(
− R2

4dµ2
t + 8σ2

t

)
.

Similarly, for the gradient term, we have

(D.18)

∥∇ht −∇h∗t ∥2L2(pT −t) =
∫
∥∇ht(x)−∇h∗t (x)∥221{∥x∥2 ≤ R}pT−t(x) dx︸ ︷︷ ︸

(i)

+
∫
∥∇ht(x)−∇h∗t (x)∥221{∥x∥2 > R}pT−t(x) dx︸ ︷︷ ︸

(ii)

.

For term (i) in (D.18), we have∫
∥∇ht(x)−∇h∗t (x)∥221{∥x∥2 ≤ R}pT−t(x) dx

≤ sup
∥x∥2≤R

∥∇ht(x)−∇h∗t (x)∥22 ≤
C2B̄2R2

σ8
T−tN

2 ,(D.19)

where the second inequality holds from Lemma D.7. For term (ii) in (D.18), we have∫
∥∇ht(x)−∇h∗t (x)∥221{∥x∥2 > R}pT−t(x) dx

≤ 16B̄2

σ4
T−t

Pr{∥XT−t∥2 > R} ≤ 2d+5 B̄2

σ4
T−t

exp
(
− R2

4dµ2
t + 8σ2

t

)
,(D.20)

where the first inequality holds from Lemma C.4, and the second inequality is due to
Lemma G.1. Substituting (D.19) and (D.20) into (D.18) yields

(D.21) ∥∇ht −∇h∗t ∥2L2(pT −t) ≤
C2B̄2R2

σ8
T−tN

2 + 2d+5 B̄2

σ4
T−t

exp
(
− R2

4dµ2
t + 8σ2

t

)
.

Setting R2 = (4dµ2
t + 8σ2

t ) logN4 in (D.17) and (D.21) completes the proof.

46



Inference-Time Alignment for Diffusion Models

Lemma D.9 (Generalization error). Suppose Assumptions 1 and 2 hold. Let the hypothesis
class Ht be defined as (5.2), then

VCdim(Ht) ≤ cLS log(S),
VCdim(∇Ht) ≤ cL2S log(LS),

where c is an absolute constant.

Proof of Lemma D.9. Since Ht ⊆ N(L, S), using Bartlett et al. (2019, Theorem 7) implies

VCdim(Ht) ≤ VCdim(N(L, S)) ≤ c1LS log(S),

where c1 is an absolute constant. According to Ding et al. (2025b, Lemma 13), we have
∇Ht ⊆ N(c2L, c3LS), where c2 and c3 are absolute constants. Using Bartlett et al. (2019,
Theorem 7) again implies

VCdim(∇Ht) ≤ c4L
2S log(LS),

where c4 is an absolute constant. This completes the proof.

Theorem 5.3. Suppose Assumptions 1 and 2 hold. Let t ∈ (0, T ). Set the hypothesis class
Ht as

Ht :=

ht ∈ N(L, S) :
sup

x∈Rd

ht(x) ≤ B̄, inf
x∈Rd

ht(x) ≥ B,

max
1≤k≤d

sup
x∈Rd

|Dkht(x)| ≤ 2σ−2
T−tB̄

 ,

where L = O(logn) and S = O(n
d

d+8 ). Let ĥλ
t be the gradient-regularized empirical risk

minimizer defined as (4.6), and let h∗t be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

E
[
∥∇ log ĥλ

t −∇ log h∗t ∥2L2(pT −t)

]
≤ Cσ−8

T−tn
− 2

d+8 ,

provided that the regularization parameter λ is set as λ = O(n−
2

d+8 ), where C is a constant
depending only on d, B̄, and B.

Proof of Theorem 5.3. Substituting Lemmas D.8, and D.9 into Lemma 5.2 yields

E
[
∥ĥλ

t − h∗t ∥2L2(pT −t)

]
≤ C log4N

σ8
T−tN

4 + Cλ
log2N

σ8
T−tN

2 + C
(Nd log2N

n log−1 n

) 1
2 + C

λ

σ4
T−t

(Nd log4N

n log−1 n

) 1
2 + C

λ2

σ8
T−t

,

where C is a constant only depending on d and B̄, and we used the fact L ≤ C ′ logN and
S ≤ Nd in Lemma D.8. Similarly,

E
[
∥∇ĥλ

t −∇h∗t ∥2L2(pT −t)
]

≤ C

λ

log4N

σ8
T−tN

4 + C
log2N

σ8
T−tN

2 + C

λ

(Nd log2N

n log−1 n

) 1
2 + C

σ4
T−t

(Nd log4N

n log−1 n

) 1
2 + Cλ

σ8
T−t

.

47



Chang, Duan, Jiao, Xu, and Yang

By setting N = O(n
1

d+8 ) and λ = O(n−
2

d+8 ), we have

(D.22)
E

[
∥ĥλ

t − h∗t ∥2L2(pT −t)
]
≲

1
σ8

T−t

n−
4

d+8 log4 n,

E
[
∥∇ĥλ

t −∇h∗t ∥2L2(pT −t)
]
≲

1
σ8

T−t

n−
2

d+8 log4 n.

Consequently,

∥∇ log ĥλ
t −∇ log h∗t ∥2L2(pT −t)

=
∥∥∥∇ĥλ

t

ĥλ
t

− ∇h
∗
t

ĥλ
t

+ ∇h
∗
t

ĥλ
t

− ∇h
∗
t

h∗t

∥∥∥2

L2(pT −t)

≤ 2
∥∥∥∇ĥλ

t

ĥλ
t

− ∇h
∗
t

ĥλ
t

∥∥∥2

L2(pT −t)
+ 2

∥∥∥∇h∗t
ĥλ

t

− ∇h
∗
t

h∗t

∥∥∥2

L2(pT −t)

≤ 2
B2 ∥∇ĥ

λ
t −∇h∗t ∥2L2(pT −t) + 2B̄

2

B4 ∥ĥ
λ
t − h∗t ∥2L2(pT −t)

≤ C ′ 1
σ8

T−t

n−
2

d+8 log4 n,

where the second inequality is owing to Lemmas C.1 and C.4, and the last inequality holds
from (D.22). This completes the proof.

E Derivations in Section 5.3
E.1 Error decomposition of the controllable diffusion models.

Lemma 5.5. Suppose Assumptions 1, 2, and 3 hold. Let q̂T−T0 be the marginal density of
Ẑ←T−T0

defined in (4.8). Then it follows that

KL(qT0∥q̂T−T0) ≲ B̄

B

K−1∑
k=0

hEP
[
∥∇ log ĥkh(X←kh)−∇ log h∗kh(X←kh)∥22

]
+ B̄

B
Tε2

ref + d exp(−T ) + d2T 2

σ4
T0
K
,

where the notation ≲ hides absolute constants.

Proof of Lemma 5.5. According to Chen et al. (2023a, Proposition C.3), we have

(E.1)

KL(qT0∥q̂T−T0) ≲ KL(qT ∥γd)︸ ︷︷ ︸
initial error

+
K−1∑
k=0

hEQ
[
∥ŝ(kh,Z←kh)−∇ log pT−kh(Z←kh)∥22

]
︸ ︷︷ ︸

base score error

+
K−1∑
k=0

hEQ
[
∥∇ log ĥkh(Z←kh)−∇ log h∗kh(Z←kh)∥22

]
︸ ︷︷ ︸

Doob’s guidance error

+
K−1∑
k=0

∫ (k+1)h

kh
EQ

[
∥∇ log qT−t(Z←t )−∇ log qT−kh(Z←kh)∥22

]
dt︸ ︷︷ ︸

discretization error

,
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where γd is the density of a standard Gaussian distribution N (0, Id).
Step 1. Initial error in (E.1). Using Chen et al. (2023a, Lemma C.4), we have

(E.2) KL(qT ∥γd) ≲ d exp(−T ).

Step 2. Reference score error and Doob’s guidance error in (E.1). Under Assumption 2, it
is apparent that EP[w(X←T )] ≥ B and supx∈Rd h∗(t,x) ≤ B̄ for each t ∈ (T0, T ). Hence, the
density ratio is uniformly bounded

(E.3) sup
x∈Rd

qT−t(x)
pT−t(x) = h∗(t,x)

EP[w(X←T )] ≤
B̄

B
.

For the reference score error term in (E.1), it follows for each 0 ≤ k ≤ K − 1 that

EQ
[
∥ŝ(kh,Z←kh)−∇ log pT−kh(Z←kh)∥22

]
=

∫
∥ŝ(kh, z)−∇ log pT−kh(z)∥22qT−kh(z) dz

=
∫
∥ŝ(kh,x)−∇ log pT−kh(x)∥22

qT−kh(x)
pT−kh(x)pT−kh(x) dx

≤ B̄

B

∫
∥ŝ(kh,x)−∇ log pT−kh(x)∥22pT−kh(x) dx

= B̄

B
EP

[
∥ŝ(kh,X←kh)−∇ log pT−kh(X←kh)∥22

]
,

where the inequality holds from (E.3) and Hölder’s inequality. Consequently,
K−1∑
k=0

hEQ
[
∥ŝ(kh,Z←kh)−∇ log pT−kh(Z←kh)∥22

]

≤ B̄

B

K−1∑
k=0

hEP
[
∥ŝ(kh,X←kh)−∇ log pT−kh(X←kh)∥22

]
≤ T B̄

B
ε2

ref ,(E.4)

where the last inequality is owing to Assumption 3. By a similar argument, we have
K−1∑
k=0

hEQ
[
∥∇ log ĥkh(Z←kh)−∇ log h∗kh(Z←kh)∥22

]

≤ B̄

B

K−1∑
k=0

hEP
[
∥∇ log ĥkh(X←kh)−∇ log h∗kh(X←kh)∥22

]
.(E.5)

Step 3. Discretization error in (E.1). According to Chen et al. (2023a, Lemma D.1), we have

(E.6) EQ
[
∥∇ log qT−t(Z←t )−∇ log qT−kh(Z←kh)∥22

]
≲
dGkT

K
,

for any t ∈ (kh, (k + 1)h), provided that ∇ log qT−t is G-Lipschitz for any t ∈ (kh, (k + 1)h).
Then it remains to estimate the Lipschitz constant Gk. Using Lemmas C.2 and C.3 yields

∇2 log qT−t(z) = − 1
σ2

T−t

Id + µT−t

σ2
T−t

∇E[Z0|Zt = z]

= − 1
σ2

T−t

Id +
µ2

T−t

σ4
T−t

Cov(Z0|Zt = z).
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As a consequence, for each 0 ≤ k ≤ K − 1,

Gk ≤ sup
t∈(T0,T )

sup
z∈Rd

∥∇2 log qT−t(z)∥op

≤ sup
t∈(T0,T )

1
σ2

T−t

+
µ2

T−t

σ4
T−t

∥Cov(Z0|Zt = z)∥op ≲
d

σ4
T0

,(E.7)

where the first inequality holds from the triangular inequality, and the second inequality is
due to the boundedness of Z0 under Assumptions 1 and 2. Combining (E.6) and (E.7) implies

(E.8)
K−1∑
k=0

∫ (k+1)h

kh
EQ

[
∥∇ log qT−t(Z←t )−∇ log qT−kh(Z←kh)∥22

]
dt ≲ d2T 2

σ4
T0
K
.

Step 4. Conclusions. Substituting (E.2), (E.4), (E.5), (E.8) into (E.1) completes the proof.

Corollary E.1. Suppose Assumptions 1, 2, and 3 hold. Let δ ∈ (0, 1). Set the hypothesis
classes {HT−kh}K=1

k=0 as (5.2) with the same depth L and number of non-zero parameters S.
Let q̂T−T0 be the marginal density of Ẑ←T−T0

defined in (4.8). Then it follows that

∥qT0 − q̂T−T0∥2TV ≤
Cδ2

σ8
T0

log
(1
δ

log
(σ8

T0

δ2

))
,

where C is a constant depending only on d, B̄, and B, and

T ≍ log
(σ8

T0

δ2

)
, K ≳

σ4
T0

δ2 log2
(σ8

T0

δ2

)
, h ≲

δ2

σ4
T0

log−1
(σ8

T0

δ2

)
ε2

ref ≲
δ2

σ8
T0

log−1
(σ8

T0

δ2

)
, n ≳

1
δd+8 log

d+8
2

(σ8
T0

δ2

)
.

Proof of Corollary E.1. Combining Theorem 5.3 and Lemma 5.5 yields

KL(qT0∥q̂T−T0) ≤ C

σ8
T0

{
Tn−

2
d+8 log4 n︸ ︷︷ ︸

(i)

+Tσ8
T0ε

2
ref︸ ︷︷ ︸

(ii)

+σ8
T0 exp(−T )︸ ︷︷ ︸

(iii)

+T 2σ4
T0

1
K︸ ︷︷ ︸

(iv)

}
,

where C is a constant depending only on d, B̄, and B. By setting

T ≍ log
(σ8

T0

δ2

)
, K ≳

σ4
T0

δ2 log2
(σ8

T0

δ2

)
,

ε2
ref ≲

δ2

σ8
T0

log−1
(σ8

T0

δ2

)
, n ≳

1
δd+8 log

d+8
2

(σ8
T0

δ2

)
,

we find

KL(qT0∥q̂T−T0) ≤ Cδ2

σ8
T0

log
(1
δ

log
(σ8

T0

δ2

))
.

Finally, using Pinker’s inequality completes the proof.
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E.2 Convergence rate of the controllable diffusion models.

Theorem 5.6. Suppose Assumptions 1, 2, and 3 hold. Let ε ∈ (0, 1). Set the hypothesis
classes {HT−kh}K=1

k=0 as (5.2) with the same depth L and number of non-zero parameters
S as Theorem 5.3. Let q̂T−T0 be the marginal density of Ẑ←T−T0

defined in (4.8), and let
(M◦ TR)♯q̂T−T0 defined as (4.9). Then it follows that

E
[
W2

2 (q0, (M◦ TR)♯q̂T−T0)
]
≤ Cε log3

(1
ε

)
.

provided that the truncation radius R, the terminal time T , the step size h, the number of
steps K, the error of reference score εref , the number of samples n for Doob’s matching, and
the early-stopping time T0 are set, respectively, as

R ≍ log
1
2

(1
ε

)
, T ≍ log

( 1
ε2

)
, K ≳

1
ε4 log2

( 1
ε2

)
, h ≲ ε4 log−1

( 1
ε2

)
ε2

ref ≲ ε2 log−1
( 1
ε2

)
, n ≳

1
ε3(d+8) log

d+8
2

( 1
ε2

)
.

Here C is a constant depending only on d, B̄, and B.

Proof of Theorem 5.6. According to the triangular inequality, we have

(E.9)

W2
2 (q0, (M◦ TR)♯q̂T−T0) = 3W2

2 (q0,M♯qT0)︸ ︷︷ ︸
(i)

+3W2
2 (M♯qT0 , (M◦ TR)♯qT0)︸ ︷︷ ︸

(ii)

+ 3W2
2 ((M◦ TR)♯qT0 , (M◦ TR)♯q̂T−T0)︸ ︷︷ ︸

(iii)

.

Here the term (i) represents the early-stopping error, the term (ii) represents the truncation
error, while the term (iii) represents the error of controllable diffusion models (4.8). In the
rest of the proof, we bound these three errors, respectively.
Step 1. Bound the term (i) in (E.9). To estimate the 2-Wasserstein distance between
the target distribution q0 and the scaled early-stopping distribution M♯qT0 , we begin by
producing a coupling of them. Let Z0 ∼ q0, and let ε ∼ N (0, Id) be independent of Z0.
Define Z̃T0 := Z0 + σT0µ

−1
T0

ε. It is apparent that Z̃T0 ∼M♯qT0 . Then

(E.10) W2
2 (q0,M♯qT0) ≤ E

[
∥Z0 − Z̃T0∥22

]
=
σ2

T0

µ2
T0

E
[
∥ε∥22

]
=
dσ2

T0

µ2
T0

.

Step 2. Bound the term (ii) in (E.9). Let ZT0 ∼ qT0 . According to the definition of the
truncation operator TR, the joint law of (µ−1

T0
ZT0 , µ

−1
T0

ZT01B(0,R)(ZT0)) is a coupling ofM♯qT0

and (M◦ TR)♯qT0 . Therefore,

W2
2 (M♯qT0 , (M◦ TR)♯qT0) ≤ E

[
∥µ−1

T0
ZT0 − µ−1

T0
ZT01B(0,R)(ZT0)∥22

]
= 1
µ2

T0

∫
∥z− z1B(0,R)(z)∥22qT0(z) dz

= 1
µ2

T0

∫
∥z∥221Rd−B(0,R)(z)qT0(z) dz

≤ 1
µ2

T0

E
1
2
[
∥ZT0∥42

]
Pr

1
2 {∥ZT0∥2 > R}

≲
1
µ2

T0

d2d+1 exp
(
− R2

4dµ2
T0

+ 8σ2
T0

)
,
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where the second ineq holds from Cauchy-Schwarz inequality, and the last inequality is due
to Lemma G.3 and Corollary G.2. By setting R2 = (4dµ2

T0
+ 8σ2

T0
) log(ε−1), we have

(E.11) W2
2 (M♯qT0 , (M◦ TR)♯qT0) ≲ d2d

µ2
T0

ε.

Step 3. Bound the term (iii) in (E.9). Let ZR
T0
∼ (TR)♯qT0 and ẐR

T0
∼ (TR)♯q̂T−T0 be optimal

coupled. This means

(E.12) W2
2 ((TR)♯qT0 , (TR)♯q̂T−T0) = E

[
∥ZR

T0 − ẐR
T0∥

2
2
]
.

On the other hand, µ−1
T0

ZR
T0
∼ (M◦ TR)♯qT0 and µ−1

T0
ẐR

T0
∼ (M◦ TR)♯q̂T−T0 . Hence,

W2
2 ((M◦ TR)♯qT0 , (M◦ TR)♯q̂T−T0)

≤ E
[
∥µ−1

T0
ZR

T0 − µ
−1
T0

ẐR
T0∥

2
2
]

= 1
µ2

T0

W2
2 ((TR)♯qT0 , (TR)♯q̂T−T0),(E.13)

where the equality holds from (E.12). Then using Villani (2009, Theorem 6.15) and the data
processing inequality, we have

W2
2 ((TR)♯qT0 , (TR)♯q̂T−T0) = 2R2∥(TR)♯qT0 − (TR)♯q̂T−T0∥TV

≤ 2R2∥qT0 − q̂T−T0∥TV.(E.14)

Combining (E.13) and (E.14) yields

W2
2 ((M◦ TR)♯qT0 , (M◦ TR)♯q̂T−T0) ≤ 2R2

µ2
T0

∥qT0 − q̂T−T0∥TV

≤ 2R2

µ2
T0

C ′ε3

σ4
T0

≤
2(4dµ2

T0
+ 8σ2

T0
) log(ε−1)

µ2
T0

C ′ε3

σ4
T0

log2
(1
ε

)
,(E.15)

where C is a constant depending only on d, B̄, and B, and the second inequality holds from
Corollary E.1 with δ = ε3.
Step 4. Conclusion. Substituting (E.10), (E.11), and (E.15) into (E.9) yields

W2
2 (q0, (M◦ TR)♯q̂T−T0) ≲

dσ2
T0

µ2
T0

+ d2d

µ2
T0

ε+
2(4dµ2

T0
+ 8σ2

T0
) log(ε−1)

µ2
T0

C ′ε3

σ4
T0

log2
(1
ε

)
≤ C

{
σ2

T0 + ε+ ε3

σ4
T0

log3
(1
ε

)}
,

where C is a constant depending only on d, B̄, and B. Letting σ2
T0
≍ ε, i.e., T0 ≍ ε, completes

the proof.

F Derivations in Section 5.4
Proposition 5.7. Suppose Assumptions 4 and 2 hold. Then for any t ∈ (0, T ) and x ∈ Rd,
we have

h∗t (x) = h̄∗t (P⊤x) := E[w(PX̄←T ) | X̄←t = P⊤x].
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Proof of Proposition 5.7. According to Assumption 4, a particle X0 following p0 satisfies

X0
d= PX̄0, X̄0 ∼ p̄0.

We first establish the relations between pt and p̄t. It is straightforward that

pt(x) =
∫
φd(x;µtx0, σ

2
t Id)p0(x0) dx0

=
∫
φd(x;µtx0, σ

2
t Id)

( ∫
δPx̄0(x0)p̄0(x̄0) dx̄0

)
dx0

=
∫ ( ∫

φd(x;µtx0, σ
2
t Id)δPx̄0(x0) dx0

)
p̄0(x̄0) dx̄0

=
∫
φd(x;µtPx̄0, σ

2
t Id)p̄0(x̄0) dx̄0

= (2πσ2
t )−

d
2

∫
exp

(
− ∥x− µtPx̄0∥22

2σ2
t

)
p̄0(x̄0) dx̄0

= (2πσ2
t )−

d
2

∫
exp

(
− ∥(Id −PP⊤)x + PP⊤x− µtPx̄0∥22

2σ2
t

)
p̄0(x̄0) dx̄0

= (2πσ2
t )−

d
2

∫
exp

(
− ∥(Id −PP⊤)x∥22 + ∥PP⊤x− µtPx̄0∥22

2σ2
t

)
p̄0(x̄0) dx̄0

= (2πσ2
t )−

d
2 exp

(
− ∥(Id −PP⊤)x∥22

2σ2
t

) ∫
exp

(
− ∥P

⊤x− µtx̄0∥22
2σ2

t

)
p̄0(x̄0) dx̄0

= exp
(
− ∥(Id −PP⊤)x∥22

2σ2
t

)
p̄t(P⊤x),(F.1)

where the seventh equality invokes the fact that (Id−PP⊤)x is orthogonal to PP⊤x−µtPx̄0,
the eighth equality is due to ∥Pv∥2 = ∥v∥2 for each v ∈ Rd, and the last equality used (5.3).
Then by a similar argument as the density, we find

h∗T−t(x) = E[w(X0) | Xt = x]

= 1
pt(x)

∫
w(x0)φd(x;µtx0, σ

2
t Id)p0(x0) dx0

= 1
pt(x)

∫
w(Px̄0)φd(x;µtPx̄0, σ

2
t Id)p̄0(x̄0) dx̄0

= 1
pt(x)(2πσ2

t )−
d
2

∫
w(Px̄0) exp

(
− ∥x− µtPx̄0∥22

2σ2
t

)
p̄0(x̄0) dx̄0

= 1
pt(x)(2πσ2

t )−
d
2

∫
w(Px̄0) exp

(
− ∥(Id −PP⊤)x + PP⊤x− µtPx̄0∥22

2σ2
t

)
p̄0(x̄0) dx̄0

= 1
pt(x) exp

(
− ∥(Id −PP⊤)x∥22

2σ2
t

) ∫
w(Px̄0)φd(P⊤x;µtx̄0, σ

2
t Id)p̄0(x̄0) dx̄0

= 1
p̄t(P⊤x)

∫
w(Px̄0)φd(P⊤x;µtx̄0, σ

2
t Id)p̄0(x̄0) dx̄0

= E[w(PX̄0) | X̄t = P⊤x] = E[w(PX̄←T ) | X̄←T−t = P⊤x],

where the second and the eighth equalities are due to Bayes’ rule, the seventh equality holds
from (F.1). This completes the proof.
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Proposition 5.8. Suppose Assumptions 4 and 2 hold. Then for all t ∈ (0, T ) and x̄ ∈ Rd∗,
the following bounds hold:

(i) B ≤ h̄∗t (x̄) ≤ B̄;

(ii) max1≤k≤d |Dkh̄
∗
t (x̄)| ≤ 2σ−2

T−tB̄; and

(iii) max1≤k,ℓ≤d |D2
kℓh̄
∗
t (x̄)| ≤ 6σ−4

T−tB̄,

where Dk and D2
kℓ denote the first-order and second-order partial derivatives with respect to

the input coordinates, respectively.

Proof of Proposition 5.8. By the simialr argument as Lemmas C.1, C.4, and C.5, we conclude
the desired results.

By a similar argument as Lemma D.8, we have the following approximation error bounds
for low-dimensional Doob’s h-function h̄∗t (5.4).

Lemma F.1 (Approximation error). Suppose Assumptions 4 and 2 hold. Let R ≥ 1, and let
the hypothesis class Ht be defined as (5.5) with L ≤ C logN and S ≤ Nd∗, then

∥ht − h̄∗t ∥2L2(pT −t) ≤ C
B̄2 log4N

σ8
T−tN

4 ,

∥∇ht −∇h̄∗t ∥2L2(pT −t) ≤ C
B̄2 log2N

σ8
T−tN

2 .

provided that R2 = (4dµ2
t + 8σ2

t ) logN4, where C is a constant only depending on d∗.

Theorem 5.9. Suppose Assumptions 4 and 2 hold. Let t ∈ (0, T ). Set the hypothesis class
Ht as

Ht :=

ht ∈ N(L, S) :
sup

x∈Rd

ht(x) ≤ B̄, inf
x∈Rd

ht(x) ≥ B,

max
1≤k≤d

sup
x∈Rd

|Dkht(x)| ≤ 2σ−2
T−tB̄

 ,

where L = O(logn) and S = O(n
d∗

d∗+8 ). Let ĥλ
t be the gradient-regularized empirical risk

minimizer defined as (4.6), and let h∗t be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

E
[
∥∇ log ĥλ

t −∇ log h∗t ∥2L2(pT −t)

]
≤ Cσ−8

T−tn
− 2

d∗+8 log4 n,

provided that the regularization parameter λ is set as λ = O(n−
2

d∗+8 ), where C is a constant
depending only on d∗, B̄, and B.

Proof of Theorem 5.9. Using the same arguments as the proof of Theorem 5.3 and applying
Lemma F.1 completes the proof.
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G Auxilary Lemmas
Lemma G.1. Suppose Assumption 1 holds. Let Xt ∼ pt. Then for each ξ > 0,

Pr
{
∥Xt∥2 ≥ ξ

}
≤ 2d+1 exp

(
− ξ2

4dµ2
t + 8σ2

t

)
.

Proof of Lemma G.1. According to Assumption 1, we have

(G.1) E
[

exp
(∥µtX0∥22

2dµ2
t

)]
≤ 2.

Let ε ∼ N(0, Id). Then it follows that

E
[

exp
(∥σtε∥22

4σ2
t

)]
= E

[
exp

(∥ε∥22
4

)]
= (2π)−

d
2

∫
exp

(∥ε∥22
4

)
exp

(
− ∥ε∥

2
2

2
)

dε

= (2π)−
d
2

∫
exp

(
− ∥ε∥

2
2

4
)

dε ≤ 2d.(G.2)

Notice that Xt
d= µtX0 + σtε, where X0 ∼ p0 and ε ∼ N(0, Id) are independent. Therefore,

E
[

exp
( ∥Xt∥22

4dµ2
t + 8σ2

t

)]
= E

[
exp

(∥µtX0 + σtε∥22
4dµ2

t + 8σ2
t

)]
≤ E

[
exp

( ∥µtX0∥22
2dµ2

t + 4σ2
t

+ ∥σtε∥22
2dµ2

t + 4σ2
t

)]
≤ E

[
exp

( ∥µtX0∥22
2dµ2

t + 4σ2
t

)]
E

[
exp

( ∥σtε∥22
2dµ2

t + 4σ2
t

)]
≤ E

[
exp

(∥µtX0∥22
2dµ2

t

)]
E

[
exp

(∥σtε∥22
4σ2

t

)]
≤ 2d+1,(G.3)

where the the first inequality follows from Cauchy-Schwarz inequality, the second inequality
holds from the independence of X0 and ε, and the last inequality is due to (G.1) and (G.2).
Then we aim to bound the tail probability. For each ξ > 0, we have

Pr
{
∥Xt∥2 ≥ ξ

}
= Pr

{ ∥Xt∥22
4dµ2

t + 8σ2
t

≥ ξ2

4dµ2
t + 8σ2

t

}
= Pr

{
exp

( ∥Xt∥22
4dµ2

t + 8σ2
t

)
≥ exp

( ξ2

4dµ2
t + 8σ2

t

)}
≤ exp

(
− ξ2

4dµ2
t + 8σ2

t

)
E

[
exp

( ∥Xt∥22
4dµ2

t + 8σ2
t

)]
≤ 2d+1 exp

(
− ξ2

4dµ2
t + 8σ2

t

)
,

where the first inequality invokes Markov’s inequality, and the last inequality is due to (G.3).
This completes the proof.

Corollary G.2. Suppose Assumptions 1 and 2 hold. Let Zt ∼ qt. Then for each ξ > 0,

Pr
{
∥Zt∥2 ≥ ξ

}
≤ 2d+1 exp

(
− ξ2

4dµ2
t + 8σ2

t

)
.
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Proof of Corollary G.2. Under Assumptions 1 and 2, supp(q0) = supp(p0). The same argu-
ment as Lemma G.1 completes the proof.

Lemma G.3. Suppose Assumptions 1 and 2 hold. Let Zt ∼ qt. Then for each ξ > 0,

E
[
∥Zt∥42

]
≲ d2.

Proof of Lemma G.3. Let ε ∼ N(0, Id). It is straightforward that

E
[
∥ε∥42

]
= 4Γ

(d+ 4
2

)
Γ

(d
2

)
≤ (d+ 4)2.

Since Zt
d= µtZ0 +σtε with Z0 ∼ q0 independent of ε, it follows from the triangular inequality

that

E
[
∥Zt∥42

]
≤ 8µ4

tE
[
∥Z0∥42

]
+ 8σ4

tE
[
∥ε∥42

]
≤ 8(d2 + (d+ 4)2),

where we used the fact that µt, σt ≤ 1, and supp(q0) = supp(p0) under Assumptions 1 and 2.
This completes the proof.
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