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Abstract. Inference-time alignment for diffusion models aims to adapt a pre-trained reference
diffusion model toward a target distribution without retraining the reference score network, thereby
preserving the generative capacity of the reference model while enforcing desired properties at the
inference time. A central mechanism for achieving such alignment is guidance, which modifies the
sampling dynamics through an additional drift term. In this work, we introduce variationally stable
Doob’s matching, a novel framework for provable guidance estimation grounded in Doob’s h-transform.
Our approach formulates guidance as the gradient of logarithm of an underlying Doob’s h-function
and employs gradient-regularized regression to simultaneously estimate both the A-function and its
gradient, resulting in a consistent estimator of the guidance. Theoretically, we establish non-asymptotic
convergence rates for the estimated guidance. Moreover, we analyze the resulting controllable diffusion
processes and prove non-asymptotic convergence guarantees for the generated distributions in the
2-Wasserstein distance. Finally, we show that variationally stable guidance estimators are adaptive to
unknown low dimensionality, effectively mitigating the curse of dimensionality under low-dimensional
subspace assumptions.

Keywords: Controllable generative learning, inference-time alignment, Doob’s h-transform, conver-
gence rate

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song and Ermon, 2019; Song
et al., 2021) have emerged as powerful generative tools for sampling from data distributions,
achieving remarkable success across diverse domains, including text-to-image and text-to-
video generation (Ramesh et al., 2021), Bayesian inverse problems (Chung et al., 2023; Song
et al., 2023; Chen et al., 2025; Chang et al., 2025b), and scientific applications (Bao et al.,
2024; Li et al., 2025; Si and Chen, 2025; Ding et al., 2024; Uehara et al., 2025a). Recent
years have witnessed the development of large-scale diffusion models pre-trained on vast
datasets. Despite the robust capabilities of these reference models in capturing the training
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distribution, the target distributions of downstream generative tasks rarely align perfectly
with this reference distribution. For example, in conditional generative learning (Dhariwal
and Nichol, 2021; Ho and Salimans, 2021), reference diffusion models generate samples from a
mixture of distributions, whereas downstream tasks require sampling from specific constituent
distributions. Similarly, in posterior sampling contexts (Chung et al., 2023; Song et al., 2023;
Chen et al., 2025; Chang et al., 2025b; Purohit et al., 2025; Martin et al., 2025), the reference
distribution serves as the prior, while the target is the posterior defined by tilting the prior
with a measurement likelihood. Furthermore, downstream tasks frequently impose additional
constraints, such as human preferences or safety considerations (Domingo-Enrich et al., 2024,
2025; Uehara et al., 2025b; Kim et al., 2025; Sabour et al., 2025; Denker et al., 2025; Ren
et al., 2025), which must be satisfied without compromising the model’s generative quality.

To bridge the gap between reference and target distributions, researchers have proposed
numerous alignment methods (Xu et al., 2023; Lee et al., 2023b; Fan et al., 2023; Clark
et al., 2024; Domingo-Enrich et al., 2024, 2025; Uehara et al., 2024b, 2025b). These strategies
generally fall into two categories: fine-tuning and inference-time alignment. Fine-tuning
approaches involve retraining the reference score network via supervised learning (Lee et al.,
2023b), reinforcement learning (Fan et al., 2023; Black et al., 2024; Clark et al., 2024;
Uehara et al., 2024c), or classifier-free fine-tuning (Ho and Salimans, 2021; Zhang et al.,
2023; Yuan et al., 2023). Despite its conceptual simplicity, fine-tuning presents significant
limitations. First, it often requires a substantial collection of high-quality samples from the
target distribution, which may be unavailable in practical scenarios like posterior sampling.
Second, the computational cost of retraining score networks can be prohibitive, particularly
for large-scale models with billions of parameters (Uehara et al., 2025b). Third, fine-tuning
is vulnerable to over-optimization (Gao et al., 2023; Rafailov et al., 2024; Kim et al., 2025),
where the network overfits to limited target samples or preferences, causing it to “forget” the
valuable prior information encoded in the reference model. This degradation undermines the
fundamental advantage of leveraging pre-trained models.

In contrast, inference-time alignment (Uehara et al., 2025b; Kim et al., 2025; Sabour et al.,
2025; Denker et al., 2025; Ren et al., 2025; Pachebat et al., 2025) eliminates the need to retrain
the reference diffusion model. These methods offer substantial computational advantages and
preserve the generative capacity of the underlying model. The core technique is guidance (Jiao
et al., 2025), which incorporates target information by introducing an additional drift term
to the reference diffusion model. Within the framework of Doob’s h-transform (Rogers and
Williams, 2000; Sarkka and Solin, 2019; Chewi, 2025), the score function for the target tilted
distribution decomposes into the sum of the reference score and a guidance term, where the
guidance is defined as the gradient of the log-Doob’s h-function (Heng et al., 2024; Tang and
Xu, 2024; Denker et al., 2024, 2025). This relationship has also been investigated through
the lens of classifier guidance (Dhariwal and Nichol, 2021), stochastic optimal control (Han
et al., 2024; Tang and Zhou, 2025), and Bayes’ rule (Chung et al., 2023; Song et al., 2023).
The primary challenge lies in accurately estimating this guidance.

Guidance estimation methods can be categorized into two main approaches: approx-
imation and learning. The approximation approach, exemplified by diffusion posterior
sampling (Chung et al., 2023) and loss-guided diffusion (Song et al., 2023), relies on heuristic
approximations that often lead to inconsistencies with the underlying mathematical formula-
tion. The learning approach (Dhariwal and Nichol, 2021; Tang and Xu, 2024; Denker et al.,
2024, 2025) attempts to learn the necessary components by deep neural networks. Classifier
guidance (Dhariwal and Nichol, 2021) learns Doob’s h-function via a classifier, but this is
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effective primarily for discrete labels. Furthermore, the convergence of the plug-in gradient
estimator of the classifier is not guaranteed, potentially undermining guidance reliability (Mou,
2025, Section 3.2.2). To mitigate this, Tang and Xu (2024) estimate Doob’s h-function and
its gradient using separate neural networks, increasing training complexity. While Denker
et al. (2024) directly learn the guidance, their method requires samples from the target tilted
distribution. Denker et al. (2025) attempt to address this data requirement via iterative
retraining.

To address these limitations, we introduce variationally stable Doob’s h-matching, a
novel framework for provable guidance estimation in inference-time alignment. We propose
a gradient-regularized regression method that simultaneously estimates Doob’s h-function
and its gradient, yielding a consistent estimator of the guidance. When combined with the
pre-trained reference score, our method enables efficient sampling from the target distribution
without the need for computationally expensive fine-tuning or access to target distribution
samples.

1.1 Contributions. Our main contributions are summarized as follows:

(i) We introduce variationally stable Doob’s matching, a novel guidance estimation frame-
work for controllable diffusion models grounded in Doob’s A-transform. The Doob
h-function is estimated via a least-squares regression approach augmented with a gradi-
ent regularization, and the plug-in gradient of the logarithm of the resulting h-function
estimator yields an estimator for the Doob’s guidance. Additionally, this method is
derivative-free, meaning it does not require access to the gradient of the weight function
between the target tilted distribution and the reference distribution.

(ii) We establish non-asymptotic convergence rates for variationally stable Doob’s matching,
showing that the proposed method guarantees convergence of both the h-function
estimator and its gradient. These results provide rigorous theoretical guarantees for
Doob’s guidance estimation (Theorem 5.3). Moreover, we derive non-asymptotic conver-
gence rates for the induced controllable diffusion models, thereby establishing rigorous
guarantees for the generated distributions in the 2-Wasserstein distance (Theorem 5.6).
Additionally, we obtain convergence rates that depend only on the intrinsic dimen-
sion, thereby mitigating the curse of dimensionality under low-dimensional subspace
assumptions (Theorem 5.9 and Corollary 5.10).

1.2 Organization. The remainder of this paper is organized as follows. In Section 2, we
provide a brief introduction to diffusion models. In Section 3, we propose the stochastic
dynamics of controllable diffusion models within the framework of Doob’s h-transform, and we
present a practical algorithm to simultaneously estimate Doob’s h-function and its gradient.
Section 5 establishes non-asymptotic error bounds for both the estimation of the h-function
and the induced controllable diffusion models. Finally, concluding remarks are provided in
Section 6. Detailed proofs of theoretical results are deferred to the appendix.

2 Preliminaries on Diffusion Models

2.1 Forward and time-reversal process. We consider the diffusion model for a reference
distribution pg. The forward process of the reference diffusion model is defined by the
Ornstein—Uhlenbeck process:

(21) dX; = =X dt + \/§dBt, te (O,T), Xo ~ po,
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where B; is a d-dimensional standard Brownian motion, and T > 0 is the terminal time. The
transition distribution of the forward process can be expressed as:

(2.2) (X¢|Xo = x0) ~ N (uxo, 0714),

where the mean and variance coefficients are given, respectively, as pu; = exp(—t) and
0?2 = 1 — exp(—2t). The forward process (2.1) is commonly referred to as the variance-
preserving (VP) SDE (Song et al., 2021) as u? + o = 1 for each t € (0,T). Denote by p; the
marginal density of X; for each ¢t € (0,7"), which satisfies

plxi) = [ alxe pxo, o la)po (o) e

where ¢q(+; 11x0, 7214) denotes the density function of the Gaussian distribution N (u;xo, 0214).
The corresponding time-reversal process (Anderson, 1982) of (2.1) is characterized by:

base score

(2.3) dX; = (Xf + 2V10ng_t(Xf)> dt +v2dB;, te(0,7),

XB_ ~ pT.

It has been established that the path measure of the time-reversal process (X;)o<i<T
corresponds exactly to the reverse of the forward process (X¢)o<t<7 (Anderson, 1982).

2.2 Path measure and filtration. We formally define the probability space for the
time-reversal process (2.3). Let Q := C([0,T],R%) be the space of continuous functions
mapping [0,7] to R?, equipped with the topology of uniform convergence. Let F be the
Borel o-algebra on 2. We define the canonical process X on € via the coordinate mapping
X (w) = w(t) for all w € Q. The natural filtration is given by F = (F;)o<i<7, where
Fi = 0(X |0 < s <t)is the o-algebra generated by the path up to time t. We denote by
P the probability measure on (€2, F) induced by the law of the solution to the SDE (2.3)
with initial distribution X§~ ~ pr. Consequently, the filtered probability space is denoted as
(Q, F,F,IP), and B; is an F-Brownian motion under IP.

2.3 Training phase: score matching. In generative learning, the exact reference score
Vlogp; in the time-reversal process (2.3) is intractable. One can estimate the reference score
using samples from the reference density py via standard techniques such as implicit score
matching (Hyvérinen, 2005), sliced score matching (Song et al., 2020), and denoising score
matching (Vincent, 2011). Let §: (0,T) x R% — R? denote an estimator for the prior score,
that is,

(2.4) 8(, ) = Viog pr—ill 2oy, < &

for a small tolerence ¢ < 1. Considerable research has established theoretical guarantees for
this score estimation (Tang and Yang, 2024; Oko et al., 2023; Fu et al., 2024; Ding et al.,
2025a), leveraging standard techniques from non-parametric regression with deep neural
networks (Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Kohler and Langer, 2021; Jiao
et al., 2023).

2.4 Inference phase: sampling. Given a reference score estimator § in (2.4), the inference
phase of diffusion models aims to generate samples by simulating the time-reversal process
with estimated score. Since the explicit solution of the time-reversal process is intractable, we
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employ an exponential integrator (Hochbruck and Ostermann, 2005, 2010; Lu et al., 2022a;
Zhang and Chen, 2023). This approach is well-suited for solving the time-reversal process
due to the semi-linearity of the drift term of the SDE in (2.3).

Let K € IN denote the number of discretization steps, and let Ty > 0 be an early-stopping
time. We define a sequence of uniform time points ¢y :== kh for £ =0, ..., K, where the step
size is h == (T'—Tp)/K. In each time sub-interval, the exponential integrator approximates
the score function by its value at the left endpoint:

AX = (X + 28(kh, X57,)) dt +V2dBy,  t € [kh, (k+ 1)h),

(2.5) .
X5 ~N(0,1y),

where 0 < k < K — 1. The resulting linear approximation to the original semi-linear SDE
has the following explicit solution:

X e = exp(W)Xj, + 20%(W)8(kh, Xj3,) + (2h)€k, 0< k< K —1,

where ¢(z) = y/exp(z) — 1, and &, ...,Ex—1 are i.i.d. standard Gaussian random variables.

Remark 2.1 (Initialization). Note that the true initial distribution of the time-reversal
process (2.3) is pp, rather than the N'(0,1I;) used in (2.5). We adopt the standard normal
distribution because sampling from A(0, 1) is significantly more computationally tractable.
This approximation is justified by the fact that pr converges to N'(0,1;) exponentially in
KL-divergence as T" — oo (Bakry et al., 2014; Vempala and Wibisono, 2019); thus, the
Gaussian initialization is valid for a sufficiently large terminal time 7.

3 Controllable Diffusion Models and Doob’s Transform

In this section, we propose controllable diffusion models for sampling from a target
distribution, defined as the reference distribution tilted by a weight function. We utilize the
theory of measure change for diffusion processes on the filtered space (2, F,F,IP).

3.1 Problem setup. We assume access to a pre-trained reference diffusion model (2.5)
that generates samples approximately from the reference distribution pg. We aim to sample
from a tilted distribution ¢g, defined by reweighting the reference distribution with a known
weight function w : R — Rxo:

w(x)po(x)

(1) a(x) = 7

, Wwhere Z = /w(x)po(x) dx < oo.

Our goal is to derive a new diffusion process that generates samples from the tilted distribution

qo directly by introducing a drift correction to the pre-trained reference diffusion model (2.5).
This problem encompasses a wide range of application scenarios.

Example 1 (Bayesian inverse problems). Bayesian inverse problems play a critical role in
scientific computing (Stuart, 2010; Kantas et al., 2014; Ding et al., 2024), image science (Chung
et al., 2023; Mardani et al., 2024; Purohit et al., 2025; Chang et al., 2025b), and medical
imaging (Song et al., 2022). In Bayesian inverse problems, we aim to recover an unknown
signal Xy € R? from noisy measurements Y € R™, which are linked by the following
measurement model:

(3.2) Y = A(Xo) +n,
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where A : R? — R™ is a known measurement operator, and n € R™ represents a measurement
noise with a known distribution. The Bayesian approach incorporates prior knowledge about
X in the form of a prior distribution pg. Given observed measurements Y =y, the goal of
Bayesian inverse problems is to sample from the posterior distribution:

w(x)po(x

(33) 0(30) == Py xly) = L)
where w(x) = pyx,(¥[x) is a likelihood determined by the measurement model (3.2), and Z
is a partition function to ensure qq is a valid probability density. For example, for a Gaussian

noise n ~ N(0,02%I,), it holds that

w(x) = 2ro%) Fexp (~ sglly — ARI).

In Bayesian inverse problems, one typically has a reference diffusion model pre-trained on the
prior distribution, and aims to sample from the posterior distribution (3.3) without retraining
the reference model.

Ezample 2 (Reward-guided generation). In the reward-guided generation (Domingo-Enrich
et al., 2025; Uehara et al., 2025b; Kim et al., 2025; Sabour et al., 2025; Denker et al., 2025;
Ren et al., 2025), human preferences and constraints can be encoded into a reward function
r: R¢ — R. For instance, in text-to-image generation, the reward function r quantifies how
well the generated data aligns with the input prompt. In practice, such reward function can
be learned from the human feedback or preference data (Stiennon et al., 2020; Ouyang et al.,
2022; Lee et al., 2023b). For the sake of simplicity, we assume throughout this work that the
reward function has already been given. A naive approach to reward-guided generation is
to maximize the expected reward max,cp [E;[r], where P is the set of probability measures
on R?. However, solely maximizing the expected reward may lead to over-optimization and
degenerate solutions (Kim et al., 2025). To mitigate this, entropy regularization (Uehara
et al., 2024a; Tang and Zhou, 2025) is incorporated into the objective functional, yielding the
following optimization problem:

(3.4) qo = arg max E[r] — oKL(7||po),
TeP

where o > 0 is a regularization parameter, and pg is the density of a reference distribution,
i.e., the distribution corresponding to the pre-trained reference diffusion model. This objective
comprises two components: the expected reward, which captures human preferences, and
the KL-divergence term, which prevents the distribution from deviating excessively from the
reference diffusion model. The closed-form solution to this optimization problem (3.4) is
given by (Rafailov et al., 2023):

w(x)po(x)
VA

qo(x) =

o) e (M),

o
where Z is the partition function to ensure qq is a valid probability density. In reward-guided
generation, the central objective is to incorporate preferences exclusively during the inference
phase, thereby avoiding the substantial computational cost of retraining the large-scale
reference diffusion model.

Ezample 3 (Transfer learning for diffusion models). Diffusion models have achieved remarkable
success in image generation. However, their performance critically depends on the availability
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of large-scale training data. In the scenarios of few-shot generation, training diffusion models
solely on limited samples typically results in poor generative performance. To retain strong
generative capability under data scarcity, a common strategy is to transfer expressive diffusion
models pre-trained on large datasets to the target domain (Ouyang et al., 2024; Wang
et al., 2024; Zhong et al., 2025; Bahram et al., 2026). Formally, transfer learning aims to
adapt a model pre-trained on a large-scale source distribution to a target distribution of
much smaller size and diversity of samples. However, directly fine-tuning a large pre-trained
diffusion model using only limited target samples often leads to severe overfitting (Wang
et al., 2024). To address this issue, transfer learning approaches for diffusion models typically
train a lightweight guidance network on the limited target data and combine it with the
pre-trained reference score network, yielding a modified diffusion model capable of sampling
from the target distribution (Ouyang et al., 2024; Zhong et al., 2025; Bahram et al., 2026).
Concretely, Ouyang et al. (2024) estimates the density ratio between the target and source
distributions,

w(x) = )

po(x)

using limited samples from the target dsitribution. For simplicity, we assume throughout

this work that the density ratio is known. Under this assumption, the objective of transfer

learning for diffusion models is to sample from the target distribution gy by leveraging the
pre-trained reference diffusion model together with the estimated density ratio.

)

3.2 Controllable diffusion models with Doob’s h-transform. In this subsection,
we achieve inference-time alignment by incorporating guidance into the reference diffusion
models via Doob’s h-transform (Rogers and Williams, 2000; Sarkkéd and Solin, 2019; Heng
et al., 2024; Chewi, 2025). We begin by constructing a target path measure Q on the filtered
probability space (€2, F,[F). We assume that Q is absolutely continuous with respect to the
reference path measure IP defined in Section (2.2). By the Radon-Nikodym theorem, this
relationship is characterized by the existence of an F-adapted process (Ly)o<i<7 with Ly > 0,
such that for every ¢ € [0,T:

_ dQ
=Pl
The process L; is known as the Radon-Nikodym derivative process, representing the likelihood
ratio between the target and reference measures conditioned on the filtration F;.

We impose two boundary conditions on the target path measure Q: (i) the marginal
distribution of the initial state X§~ under Q must match that of IP; and (ii) the marginal
distribution of the terminal state X% under Q must coincide with the tilted distribution g
defined in (3.1). To enforce these constraints, we specify the Radon-Nikodym derivatives of
Q with respect to IP at the initial and terminal times as follows:

:LQ =1, and LT:d—Q :LQ:M,

dIP |7, dPlr, dP  EPw(X%)]
where the denominator serves as the normalizing constant ensuring that Q is a valid probability
measure, i.e., EF[Ly] = 1.

The rest of our derivation proceeds in two steps. First, we characterize the stochastic
dynamics of X;~ under the target measure Q. Second, by invoking the weak uniqueness of
solutions to stochastic differential equations (Oksendal, 2003, Lemma 5.3.1), we construct a
controllable diffusion process under the reference path measure IP whose terminal distribution
coincides with the target tilted distribution gg.

(3.5) Ly

(3.6) Lo
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Dynamics under the target path measure. Girsanov’s theorem (Oksendal, 2003, Theorem
8.6.8) establishes a fundamental correspondence between a drift shift in the driving Brownian
motion and the dynamics of the associated Radon-Nikodym derivative process. Accordingly,
we first characterize the evolution of the time-dependent likelihood ratio L;.

Proposition 3.1 (Doob’s h-function). The Radon-Nikodym derivative process Ly, as defined
in (3.5), admits the following representation:

h*(t, X;7)

dQ
L= e A = ey

where h* : [0,T] x R — R, referred to as Doob’s h-function, is defined as the conditional
expectation of the terminal weight:

(3.7) h*(t,x) = EY [w(X5F) | Xi~ = x].
Furthermore, the log-likelihood ratio satisfies the following SDE:
d(log L) = Vlog h*(t, X;7) "V/2dB; — |V log h* (t, X;7)||3 dt.

The proof of Proposition 3.1 is provided in Appendix A. With the dynamics of log L;
established, we derive the stochastic dynamics of X;~ under the target measure Q via
Girsanov’s theorem (Oksendal, 2003, Theorem 8.6.6).

Proposition 3.2. Let the reference process X~ satisfy the SDE (2.3) under the path measure
P, and let Q be the target path measure defined by (3.6). Assume that the Novikov condition
holds:

(3.8) JE“’[exp(/OT||V10gh*(s,X§)||§ds)] < 0.

Define a process (Et)lgth by
(3.9) dB; = dB; — V2V log h*(t,X{7) dt,

where By is a Brownian motion under P. Then f}t is a standard Brownian motion under Q.
Further, under the path measure Q, the reference process X;~ in (2.3) evolves according to:

(3.10) dX; = (X{ 4 2Viog pr— (X)) + 2V log h* (¢, X)) dt + V2 dB,.

The proof is deferred to Appendix A. By the construction in (3.6), the law of X§ under
Q coincides with the target tilted distribution gg.

Remark 3.3 (Novikov condition). The condition in (3.8) ensures that the exponential local
martingale defined by the drift shift is a true martingale (Karatzas and Shreve, 1998,
Corollary 5.13), which is sufficient for the Radon-Nikodym derivative to be well-defined and
for Girsanov’s theorem to apply.
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Controllable diffusion process under the reference measure. Although Proposition 3.2
constructs stochastic dynamics driven by Brownian motion under Q that achieve the desired
terminal distribution gy, practical implementation necessitates an SDE driven by Brownian
motion under the reference measure IP.

To address this, we construct a surrogate process Z;~ on the reference probability space
(Q, F,FF,P) that adopts the drift derived for Q:

(3.11) dZ;~ = (2i +2Vlogpr (Z; ) +2Vlogh*(t, Z{") ) dt + V2 dB,.

base score Doob’s guidance

Since the process Z;~ driven by the IP-Brownian motion (3.11) satisfies the same SDE as X}~
driven by the Q-Brownian motion (3.10), the weak uniqueness property of SDE solutions
guarantees (Oksendal, 2003, Lemma 5.3.1) that the law of Z;~ under PP is identical to the law
of X;~ under Q for all ¢t € [0,7]. Thus, the law of Z% under P coincides the target tilted
distribution gp. For a detailed formal statement, see Oksendal (2003, Theorem 8.6.8).

4 Variationally Stable Doob’s Matching

We have thus far established a controllable diffusion process (3.11) capable of generating
samples from the target tilted distribution gy. However, the Doob’s h-guidance, required
by (3.11), remains intractable. This subsection proposes a variationally stable Doob’s matching
method to address the estimation of the Doob’s guidance.

4.1 Vanilla least-squares regression for Doob’s matching. For any t € (0,7), the
Doob’s h-function h; := h*(t,-) defined as (3.7) is the unique minimizer of the following
implicit Doob’s matching objective:

Je(he) = B [[lhe(X) — w(X)|3]

(4.1)
= ExtgpoBernr(o,1,) [t (X0 + o7-1€) — w(Xo) 3],

where w : R — R>g is the known weight function in (3.1). The following proposition justifies
the use of J; as a surrogate for the explicit L?-distance.

Proposition 4.1. For every t € (0,T), the Doob’s h-function hf in (3.7) minimizes the
implicit Doob’s matching objective (4.1). Further,

Je(he) = EX [|he(Xi7) = hi (X)) + V2,
where V2 = Y [Var(w (X% )|X;7)] is a constant independent of hy.

The proof of Proposition 4.1 is provided in Appendix B.

4.2 Limitations of vanilla regression. Crucially, computing the Doob’s guidance V log h}
in (3.11) requires estimating not only the function h; itself but also its gradient VA, as the
guidance is given by:
Vhi(x)
Vlog hj(x) = — 2,
! hi (x)

According to Proposition 4.1, the objective J; is only coercive with respect to the
L?(pp_¢)-norm. Specifically, for any hy € L?(pr—_y),

x € R

(4.2) Ji(he) = Tu(hi) = b = B 2,

9
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However, even if hy is close to h} in the L? sense, the gradient Vh; may remain highly
oscillatory. This leads to an unstable plug-in estimator for the Doob’s guidance, a difficulty
noted in prior works such as Tang and Xu (2024, Section 3.2.1) and Mou (2025, Section 3.2.2).
Similar issues arise in related contexts, including classifier guidance (Dhariwal and Nichol,
2021), Monte Carlo regression (Uehara et al., 2025b, Section 2.2), and Ouyang et al. (2024).

To illustrate this fundamental limitation, consider the sequence of functions f,, : Z — R
defined by z + n~!sin(nx), alongside the zero function fy = 0, where T := [0, 27]. While
| fn = follz2(z) — 0 as n — oo, the distance between their derivatives does not vanish, i.e.,
limp o0 |/, — follz2z) # 0. As a result, the convergence of the plug-in Doob’s guidance
estimator derived from vanilla regression (4.1), as utilized in Uehara et al. (2025b); Ouyang
et al. (2024), cannot be guaranteed in general.

To mitigate this, Tang and Xu (2024) estimate Doob’s h-function and its gradient
separately via a martingale approach. In contrast, in the remainder of this work, we propose
an approach to simultaneously estimate both the function and its gradient.

4.3 Variationally stable Doob’s matching. To simultaneously estimate the Doob’s
h-function and its gradient, we adopt a gradient-regularized regression (Drucker and Le Cun,
1991, 1992; Ding et al., 2025b). The population risk is defined by incorporating an additional
Sobolev regularization to (4.1):

gradient regularization

(4.3) hit = argmin J7\(he) = Ji(he) + NET [[|[Vhe(X7) 3]
’ hi:RI—R4

= Ji(he) + NExppo Benvio,10) [ Ve (X0 + or—€)[3],

where A > ( is a regularization parameter. The following results characterize the regularization
gap and the variational stability of this formulation.

Proposition 4.2 (Regularization gap). Let A > 0, hy be the Doob’s h-function defined
as (3.7), and h} be the minimizer of J7 defined as (4.3). Then h} € H?(pr_4), and

b — h:||2L2(pT,t) < M| AR} + Vhy - VIngT—tH%P(
IVh = V|72 (pp,y < MARF + Vhy - V log pr—i[|72(

PT—t)’
PT—t)

The proof of Proposition 4.2 is provided in Appendix B. This proposition demonstrates
that as A\ — 0, the minimizer ;' of the regularized objective (4.3) converges to h} in H'-norm.
More importantly, the objective is variationally stable in the H' sense:

Proposition 4.3 (Variational stability). Let A > 0, and h} be the minimizer of J;* defined
as (4.3). Then for any hy € H(pr—¢), we have

1

1
m{ﬂk(ht) - \7t>\(h£\)} < ”ht - h?H%{l(PT—t) < m{ﬂk(ht) — %A(hi\)}

The proof of Proposition 4.3 is provided in Appendix B. We refer to the regularized
objective J; as variationally stable because the convergence in this objective functional
necessitates simultaneous convergence in both the function values and their gradients, i.e.,
stability in the H' sense. Such variational stability ensures that any candidate function
h; achieving a low objective value J(h;) is guaranteed to be an approximation of the
ground-truth Doob’s A-function in both value and gradient.

10
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Comparison between vanilla and gradient-regularized Doob’s matching. The dis-
tinction between vanilla Doob’s matching (4.1) and the proposed gradient-regularized Doob’s
matching (4.3) is fundamental for stable diffusion guidance estimation. While vanilla regres-
sion guarantees convergence in the L?-norm; see (4.2), it can be unstable in the H! sense. In
contrast, the proposed objective .7,&)‘ is coercive with respect to the H' norm; that is, for a
fixed A > 0,

T he) = T (he) = |lhe = Wl 3p oy, )-

This property ensures the simultaneous estimation of Doob’s h-function and its gradient,
thereby yielding a plug-in estimator for Doob’s guidance with mathematical guarantees.

4.4 Doob’s guidance estimation. Since the expectation in the population risk (4.3)
is computationally intractable, we approximate it by empirical risk using independent and
identically distributed samples:

~ ~ A& . )
(44) TP (he) = Ji(he) + 5 3 V(e X + o) 3,
i=1

where the empirical least-squares risk is defined as

~ 1 ) ) .
(4.5) Je(he) = — D Mhelpr—iXg + or—ie") — w(Xy)l3.
i=1
Here X}, ..., Xp are independent and identically distributed random variables drawn from
the reference distribution pg, and e€1,...,&, are independent standard Gaussian random

variables. Then one has a gradient-regularized empirical risk minimizer:

(4.6) h} € argmin 7 (hy),
ht€
where 7 is a hypothesis class, which is chosen as a neural network class in this work.
The Doob’s matching with gradient regularization (4.6) yields a valid plug-in estimator
of the Doob’s guidance:

NV ~y . ViNz) _ Vhi(z)
(4.7) g)(z) = Vlogh(z) = e "~ @

=Vloghi(z), zeR<

4.5 A summary of computing procedure. By a similar argument as Section 2.4, we
have the exponential integrator for the controllable diffusion model:

dZ = (ZF + 28(kh, Z3) + 28N (kh, Z5;,)) dt + V2dBy, ¢ € (kh, (k + 1)h),

(4.8) g
Zy ~N(0,1y),

where 0 < k < K — 1, the pre-trained reference score estimator S is defined as (2.4), and the
Doob’s guidance estimator g* is defined as (4.7).

We apply post-processing to the generated particle 2<T_7T0 to ensure numerical stability
and facilitate the theoretical analysis presented in Theorem 5.6 (Lee et al., 2023a; Chen
et al., 2023a). First, we assume the target distribution gy is concentrated on a domain
centered at the origin, such as a distribution with compact support (Assumption 1) or with
light tails. Consequently, we introduce a truncation operator to the particles obtained from
the controllable diffusion model (4.8). Second, because the controllable diffusion process

11
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is terminated at an early-stopping time Ty, there exists a mean shift between the target
distribution go and the early-stopping distribution ¢r, ~ ¢r—_r,, as indicated by (2.2). To
mitigate this drift, we employ a scaling operator. Specifically, for R > 0, we define a truncation
operator Tr : z — zlp(o r)(z) and a scaling operator M : z ui)lz. The final processed
particle is defined as

(4.9) Mo Tr(Zi_g,) = N%()lZ?fTO]lB(o,R)(Z?fTO)y

and we denote its density by (M o Tg)sqr—1,-
A complete procedure is summarized in Algorithm 1.

Algorithm 1: Inference-time alignment via variationally stable Doob’s matching

Input: Reference score estimator S, the weight function w, the regularization
parameter A, the step size h, and the number of steps K.
Output: Particle M o Tr( T_,) follows the tilted distribution go approximately.

1 # Doob’s matching

2 Estimate Doob’s h-function by ?Li‘ via gradient regularized Doob’s matching (4.6).
3 # Controllable generation

4 Generate the initial particle Z§ ~ N(0,1,).

5 for k=0,..., K—1do

6 Evaluate the reference score: sy < S(kh, Zﬁ)

7 Evaluate the Doob’s guidance: gy, + V log P‘(kh, 2;6_,1)

8 Exponential integrator: 2<(;+1)h ~ J\/(exp(h)zl‘gZ +20%(h) (8% + k), #*(2R)1,).
9 end
10 # Truncation and scaling

=
=

Mo TR(Z?JTO) T Mi)lzzthoﬂB(O’R) (Zr}?*TO)'
return M o Tr(Z5 1)

-
M

5 Convergence Analysis

In this section, we derive a non-asymptotic convergence rate for the variationally stable
Doob’s matching (4.6) and the induced controllable diffusion model (4.8). Furthermore, we
demonstrate that this convergence rate mitigates the curse of dimensionality under mild
assumptions.

5.1 Assumptions. We begin by outlining the essential technical assumptions required for
our theoretical results.

Assumption 1 (Bounded support). The support of the target distribution ¢g is a compact
set contained within the hypercube {xg € R? : ||xq[|cc < 1}.

Assumption 1 is a standard condition imposed on the data distribution (Lee et al., 2023a;
Oko et al., 2023; Chang et al., 2025a; Beyler and Bach, 2025). This constraint is well-motivated
by practical applications; for instance, image and video data consist of bounded pixel values,
thereby satisfying this requirement.

Assumption 2 (Bounded weight function). The weight function w defined in (3.1) is bounded
from above and bounded away from zero. Specifically, there exist constants 0 < B < 1 <
B < oo such that

B <w(x) < B, forall x € supp(qo).

12
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Assumption 2 implies that the reference distribution py and the tilted distribution gq satisfy
mutual absolute continuity, ensuring that their supports coincide (i.e., supp(po) = supp(qo))-
This condition is crucial for establishing the regularity of Doob’s h-function. Furthermore,
the ratio x = B/B serves as a condition number that characterizes the difficulty of the
controllable diffusion task, as discussed in the context of posterior sampling by Purohit et al.
(2025); Ding et al. (2024); Chang et al. (2025b).

Under Assumptions 1 and 2, we establish the regularity properties of Doob’s h-function
defined in (3.7).

Proposition 5.1. Suppose Assumptions 1 and 2 hold. Then for allt € (0,T) and x € R?,
the following bounds hold:

(i) B < hi(x) < B;
(i) maxi<p<q |Dihi(x)| < 2072,B; and
(iii) maxy<ke<q |DEhi(x)| < 6072, B,

where Dy, and Diz denote the first-order and second-order partial derivatives with respect to
the input coordinates, respectively.

The proof of Proposition 5.1 is deferred to Appendix C. It is worth noting that Propo-
sition 5.1 relies solely on the boundedness of the weight function w, without requiring the
existence or smoothness of its gradients. Nevertheless, we establish that Doob’s h-function
admits bounded derivatives. This result stems from the definition of Doob’s h-function as a
posterior expectation under a Gaussian likelihood; the inherent smoothness of the Gaussian
kernel endows the posterior expectation with strong regularity properties.

Assumption 3 (Reference score estimation error). The reference score estimator § defined
in (2.4) satisfies the following error bound:

K-1
= > WP (15060 Xi5)  Vlogpr-an(Xia)IF] < e

Assumption 3 requires the L2-error of the reference score estimator § to be bounded
with respect to the reference path measure I°. In our setting, where numerous samples from
the reference distribution pg are available, estimators satisfying this bound can be obtained
via implicit score matching (Hyvérinen, 2005), sliced score matching (Song et al., 2020), or
denoising score matching (Vincent, 2011). While one can derive explicit bounds of reference
score matching as Tang and Yang (2024); Oko et al. (2023); Fu et al. (2024); Ding et al.
(2025a); Yakovlev and Puchkin (2025a); Yakovlev et al. (2025) using non-parametric regression
theory for deep neural networks (Bauer and Kohler, 2019; Schmidt-Hieber, 2020; Kohler and
Langer, 2021; Jiao et al., 2023), we adopt this condition to maintain clarity of presentation,
following the convention of Lee et al. (2023a); Chen et al. (2023a); Beyler and Bach (2025);
Kremling et al. (2025).

5.2 Error bounds for the Doob’s guidance estimator. We begin by introducing the
concept of Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971; Anthony
et al., 1999; Bartlett et al., 2019), which measures the complexity of a function class.

Definition 1 (VC-dimension). Let . be a class of functions mapping from X to R. For
any num-negative integer m, the growth function of J# is defined as

Il,;(m) = max (sgnh(xi),...,sgnh(xy)) : h € A}

T1yee, T €EX |{
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We say ¢ shatters the set {x1,...,zy}, if
{(sgnh(xy1),...,sgnh(zy)): h e A} =2™.

The Vapnik-Chervonenkis dimension of .7, denoted by VCdim(5¢), is the size of the largest
shattered set, i.e., the largest m such that II»(m) = 2™.

To simplify notation, we define the gradient classes and their associated VC-dimensions.
For a differentiable hypothesis class % consisting of functions mapping from R¢ to R, the
VC-dimension of the gradient hypothesis class is defined as

VCdim(V.7) = lrggé(dVCdim(Dk,%”), Dy = {Dyh: h € i},

where Dy, represents the derivative with respect to the k-th entry of the input.
The following lemma provides an oracle inequality for the variationally stable Doob’s
matching (4.6).

Lemma 5.2 (Oracle inequality). Suppose Assumptions 1 and 2 hold. Lett € (0,T) and let
6 be a hypothesis class. Let h) be the gradient-reqularized empirical risk minimizer defined
as (4.6), and let hi be the Doob’s h-function defined as (3.7). Then the following inequalities
hold:

A * . * *
E[|I1} — hilliagy o] <, i0f, {Ilhe = b2 )+ MThe = VA2, )}

(1)
B2 (VCdim(,}ﬁ))% \dB? (VCdim(V%))% N M\2dB?
nlog™'n ok ,\ nlog~'n of
N—_——
(1) (I11)
E[IIVA} = Vi 22 ] £ inf {<lh - B2 Ik = VB 22y )
3 t L2(pT—t) Nhte%i )\ t 3 LQ(pT—t) t 3 LQ(pT—t)
(1))
B? (VCdim(%))% dB? (VCdim(V%))% N \dB?
A\ nlog7tin o% N nlog~'n of '
N——
(1I) (II1)

where the notation < hides absolute constants.

The proof of Lemma 5.2 is deferred to Appendix D. Both oracle inequalities for Doob’s
h-function and its gradient decompose the error into three components: approximation error,
generalization error, and regularization gap.

(I) The approximation error is defined as the minimal H!-distance between functions
in the hypothesis class 7 and the ground-truth Doob’s h-function h}, measuring the
approximation capability of J#.

(IT) The generalization error captures the error arising from finite-sample approximation,
which vanishes as the number of samples approaches infinity.

(ITII) The regularization gap is introduced by the gradient regularization in the objective
functional, which causes the minimizer of the variationally stable objective (4.3) to
deviate from the ground-truth Doob’s h-function h; (3.7). This gap has been analyzed
in Proposition 4.2.
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Comparison with oracle inequality of vanilla regression. Lemma 5.2 is analogous to
the oracle inequality found in regression problems. Let h; be the vanilla estimator estimated

by mi
holds:

(5.1)

nimizing (4.5) over the hypothesis class .7. Informally, the following oracle inequality

- =2 (VCdim (%) \ 3
* 112 . * 12 2
EMM_MM%inﬁgﬂm_MM%p0+BC}Bgﬂf)'
approximation generalization

Comparing (5.1) with Lemma 5.2 reveals several crucial differences:

(i)

(i)

(iii)

The approximation error in Lemma 5.2 is measured in the H'-norm, whereas in (5.1), it
is measured in the L?-norm. This distinction is natural because we require the estimator
to converge in the H'-norm; thus, simultaneous approximation of the function and its
derivatives is essential. Simultaneous approximation using neural networks has been
investigated in various contexts (Li et al., 2019; Giihring et al., 2020; Giihring and
Raslan, 2021; Duan et al., 2022a,b; Lu et al., 2022b; Shen et al., 2022, 2024; Belomestny
et al., 2023; Yakovlev and Puchkin, 2025b).

In vanilla regression, the generalization error in (5.1) depends only on the complexity
of the hypothesis class. In contrast, the generalization error bounds in Lemma 5.2
also depend on the complexity of the derivative classes V.7%. This occurs because
the objective functional of the gradient-regularized Doob’s matching (4.3) includes
the gradient norm term. Consequently, the error from finite-sample approximation is
influenced not only by the complexity of the hypothesis class but also by that of the
derivative class.

The most significant difference lies in the regularization error. If we focus solely on
the oracle inequality for iAz;\, letting A go to zero reduces the expression to the vanilla
regression oracle inequality (5.1). However, the bound for the gradient V?Lt)‘ diverges as
the regularization parameter \ approaches zero. This highlights the key advantage of
our gradient-regularized method: the gradient-regularized is essential for guaranteeing
simultaneous convergence of both the estimator value and its gradient. Additionally,
there exists a trade-off with respect to A in the oracle inequality for iALg\ a larger A
leads to larger regularization error, while reduces the approximation and generalization
errors.

Given the oracle inequality for a general hypothesis class .77, we consider the specifical

case t

hat 7% is chosen as a neural network class, with the aim of deriving non-asymptotic

convergence rates. We begin by formally defining the neural network class.

Definition 2 (Neural network class). A function implemented by a neural network h : RN —

RNz+1 ig defined by

h(x) = TL(o(Tr-1(- - o(To(x)) -~ +))),
where the activation function p is applied component-wise and Ty(x) := Ayx + by is an
affine transformation with A, € RVe+1XNe and by € RY for £ =0, ..., L. In this paper, we

consider the case where N9 = d + 1 and Npy1 = 1. The number L is called the depth of

neura.

1 networks. Additionally, S := S>5 (|[Asllo + ||be]lo) represents the total number of

non-zero weights within the neural network. We denote by N (L, .S) the set of neural networks
with depth at most L and the number of non-zero weights at most S.
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The following theorem establishes the convergence rate of the estimated Doob’s guidance
given in (4.7).
Theorem 5.3 (Convergence rate of Doob’s guidance). Suppose Assumptions 1 and 2 hold.
Let t € (0,T). Set the hypothesis class . as
sup he(x) < B, inf hy(x) > B,
x€R? x€R?

D.h <20:2.B
Igggdfeungd! khe(x)| < 2077,

(5.2) = h € N(L,S) :

)

where L = O(logn) and S = (’)(nﬁdS). Let hy) be the gradient-regularized empirical risk
minimizer defined as (4.6), and let hy be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

]E[HVlog?L? — Vlog hZ‘HZLg(pT_t)} < Ca;étn_ﬁ log* n,

2
provided that the regularization parameter \ is set as A = O(n~ 4+%), where C' is a constant
depending only on d, B, and B.

The proof of Theorem 5.3 is deferred to Appendix D. This theorem demonstrates that
the L2-error of the Doob’s guidance estimator (4.7) converges to the exact Doob’s guidance
in (3.11) as the sample size increases, provided that the size of the neural network is
appropriately chosen. However, since the prefactor a;ﬁt diverges as t approaches the terminal
time T, early stopping in controllable diffusion models (4.8) is required to ensure the validity
of the Doob’s guidance estimator.

Remark 5.4 (Comparisons with previous work). Simultaneous estimation of a function and
its gradient using deep neural network has been investigated by Ding et al. (2025b). The
most important distinction in our work lies in the elimination of the convexity assumption on
the hypothesis class. Specifically, Ding et al. (2025b, Lemma 7) propose an oracle inequality
under the assumption that the hypothesis class is convex. Furthermore, Ding et al. (2025b,
Theorem 3) requires the estimator to be a minimizer of the gradient-regularized empirical risk
over the convex hull of a neural network class, which is intractable in practice. In contrast,
Lemma 5.2 eliminates the requirement of convexity for the hypothesis class, and Theorem 5.3
removes the need for the convex hull of the neural network class. This aligns the theoretical
analysis more closely with practical computing.

5.3 Error bounds for the controllable diffusion models. In this subsection, we
establish a non-asymptotic convergence rate for the controllable diffusion models (4.8). We
begin by presenting an error decomposition for the KL-divergence between the early-stopping
distribution g7, and the distribution of Z?_TO.

Lemma 5.5 (Error decomposition). Suppose Assumptions 1, 2, and 3 hold. Let gr_t, be the
marginal density of Zi 1, defined in (4.8). Then it follows that

n K—1

. B =~ X
KLlan, Jar-n,) S 5 > WE® |V log hi (Xfz) ~ Vlog hi (X7 3]
= k=0
(1)
B d?T?
+ =T, +dexp(-T) R
E ———— O'TOK
S—— (111) ——
(1) (1v)
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where the notation < hides absolute constants.

The proof of Lemma 5.5 is deferred to Appendix E. Lemma 5.5 decomposes the KL-
divergence between the early-stopping distribution g7, and the distribution of Z?fTO into four
components: (I) Doob’s guidance error, (II) the reference score error, (III) the initialization
error, and (IV) the discretization error. Specifically, Doob’s guidance error represents the
average error of Doob’s h-guidance estimator at each time point, which has been investigated
in Theorem 5.3; the reference score error is the average error of the reference score estimator
at each time point, which is discussed in Assumption 3; the initialization error arises from
replacing the initial distribution ¢y = pp with a Gaussian distribution in (4.8); and the
discretization error is induced by the exponential integrator.

While Lemma 5.5 characterizes the error between the estimated distribution gr_7;, and
the early-stopping distribution g7;,, our primary interest lies in the discrepancy between gr_7,
and the target tilted distribution gp defined in (3.1). Since the KL-divergence does not satisfy
the triangular inequality, we instead propose an error bound in 2-Wasserstein distance. The
following theorem establishes the 2-Wasserstein distance between the scaled and truncated
distribution (M o Tg)sGr—1, defined in (4.9) and the target tilted distribution go.

Theorem 5.6 (Convergence rate of controllable diffusion models). Suppose Assumptions 1, 2,
and 3 hold. Let ¢ € (0,1). Set the hypothesis classes {#r_kp} 55! as (5.2) with the same
depth L and number of non-zero parameters S as Theorem 5.3. Let qr_r, be the marginal
density of Z?_TO defined in (4.8), and let (M o Tg)sqr—T, defined as (4.9). Then it follows
that

~ 1
E |:W22(q07 (M o TR)ﬁqT—To):| S CE 10g3 (g)7
provided that the truncation radius R, the terminal time T, the step size h, the number of
steps K, the error of reference score €ret, the number of samples n for Doob’s matching, and
the early-stopping time Ty are set, respectively, as

1 /1 1 1 1 1
= = (= - - > - 2( - < 4 -1
R =< log2 (5)’ T =< log (82), Kz " log (82), h < e log (82)
1 1 ats 1
2 27 1 d+8
Eror S e”log (6—2), nz P log 2 (6—2)
Here C' is a constant depending only on d, B, and B.

The proof of Theorem 5.6 is deferred to Appendix E. This theorem establishes a non-
asymptotic convergence rate for the controllable diffusion model (4.8) using the variationally
stable Doob’s matching (4.6). Crucially, it provides theoretical guidance for selecting hyper-
parameters, including the truncation radius R in (4.9), the step size h, the number of steps
K in (4.8), the early stopping time Tp, the terminal time T', the reference score error et
(Assumption 3), and the sample size n for Doob’s matching in (4.4).

However, this rate suffers from the curse of dimensionality (CoD), implying that the
required number of samples n grows exponentially as the error tolerance € decays. We address
this challenge in the remainder of this section under a low-dimensional subspace assumption.

5.4 Adaptivity to low-dimensionality. In this subsection, we demonstrate that the
convergence rate mitigates the curse of dimensionality under a low-dimensional subspace
assumption, a setting previously explored in Chen et al. (2023b, Section 3) and Oko et al.
(2023, Section 6).
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Assumption 4 (Low-dimensional subspace). Let d* < d be an integer, and P € R%*?" be a
column orthogonal matrix, i.e., PTP = I;. Let pg be a probability density with a compact
support contained within a hypercube {Xo € R? : ||Xo|lcc < 1}. The reference density po is a
push-forward of pg by the linear map P, i.e., pg = Pypo.

Consequently, the reference density pg is supported on a linear subspace {Px( € R? :
%o € R?"} with an ambient dimension d, and a much smaller intrinsic dimension d* < d.

Before proceeding, we define the forward and time-reversal process in the low-dimensional
latent space. Analogously to (2.1), the forward process reads

dX, = =X, dt +v2dB,;, te (0,T), Xo ~ po,

where By is a d*-dimensional standard Brownian motion, and 7" > 0 is the terminal time.
The transition distribution of this forward process is given by:

(53) (Xt|X0 = )_(0) ~ N(Mt)_((), O'?Id*).

Let p; denote the marginal density of X; for t € (0,T). The corresponding time-reversal
process (Anderson, 1982) is defined as

dX¢ = (X§ +2Viogpr_ (X)) dt + vV2dBy, te (0,7),
X§ ~ pr.

As shown by Anderson (1982), the path measure of the time-reversal process (X;™)o<i<r
corresponds exactly to the reverse of the forward process (Xt)ogth-

The following result establishes a relationship between the ground-truth Doob’s h-
function (3.7) and its analogue A} : R?” — R in the low-dimensional latent space. In other
words, it provides a low-dimensional representation of the ground-truth Doob’s h-function.

Proposition 5.7 (Low-dimensional representation). Suppose Assumptions J and 2 hold.
Then for any t € (0,T) and x € R?, we have

(5.4) hi(x) = h;(P'x) = Elw(PX%) | X;~ = P'x].

The proof of Proposition 5.7 is provided in Appendix F. Proposition 5.7 implies that
estimating the ground-truth Doob’s h-function reduces to estimating its low-dimensional
counterpart ﬁ;" : R” — R, thereby enabling the Doob’s guidance estimator to adapt to
low-dimensional structures.

Analogously to Proposition 5.1, we can establish the regularity properties of the low-
dimensional representation of Doob’s h-function A} : R — R in (5.4).

Proposition 5.8. Suppose Assumptions / and 2 hold. Then for allt € (0,T) and x € R,
the following bounds hold:

(i) B < hi(%) < B;
(ii) maxi<g<a|Dyhi(%)| < 207, B; and
(idi) maxi<ke<q |Dy,hi(X)| < 6072, B,

where Dy and DI%Z denote the first-order and second-order partial derivatives with respect to
the input coordinates, respectively.
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The proof of Proposition 5.7 is provided in Appendix F. Based on these results, we derive
the convergence rates for the variationally stable Doob’s matching under the assumption of
low-dimensional subspace.

Theorem 5.9 (Adaptivity to intrinsic dimension). Suppose Assumptions / and 2 hold. Let
t € (0,T). Set the hypothesis class 7 as

sup hy(x) < B, inf hy(x) > B,
xcR4 x€R4

D <20:%,B
iz, sup [Dihy(x)| < 2072,

(5.5) A= hy € N(L,S) :

where L = O(logn) and S = (’)(nfi*dﬁ). Let h) be the gradient-regularized empirical risk
minimizer defined as (4.6), and let hy be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

~ 2
]E[HVlog hy — Vlog h:”%%ppt)} < Cop® n~ T+ loghn,

2
provided that the regularization parameter X is set as A = O(n~T+8), where C is a constant
depending only on d*, B, and B.

The proof of Theorem 5.9 is provided in Appendix F. This result confirms that the
convergence rate eliminates the exponential dependence on the ambient dimension d, scaling
exponentially solely with the intrinsic dimension d* < d. This effectively mitigates the curse
of dimensionality in Theorem 5.3.

The following corollary is a direct consequence of Theorem 5.9, derived using arguments
similar to those in Theorem 5.6.

Corollary 5.10. Suppose Assumptions 4, 2, and 3 hold. Let ¢ € (0,1). Set the hypothesis
classes {#_pn}E5L as (5.2) with the same depth L and number of non-zero parameters
S as Theorem 5.3. Let qr—7, be the marginal density of 2<T_7T0 defined in (4.8), and let
(Mo Tr)sGr-m, defined as (4.9). Then it follows that

E[W3 (g0, (M o T)sdr—1,)] < Celog? (%)

provided that the truncation radius R, the terminal time T, the step size h, the number of
steps K, the error of reference score eref, the number of samples n for Doob’s matching, and
the early-stopping time Ty are set, respectively, as

R = log? <1>, T = log (5%)’ K> ‘€l4log2 (5%)’ h < etlog™t ((;2)

g
Eror S €2 log™! (;2)» nz ﬁlog%8 (;2)

Here C is a constant depending only on d*, d, B, and B.

Crucially, the convergence rates in Corollary 5.10 depend only polynomially on the
ambient dimension d, while the sample complexity depends exponentially solely on the
intrinsic dimension d* < d. This result significantly mitigates the curse of dimensionality.
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Remark 5.11. Adaptivity to low dimensionality plays a pivotal role in the analysis of diffusion
and flow-based models. One line of work studies the adaptivity of score or velocity estimator
to low dimensionality under Assumption 4 or its variants; see e.g., Chen et al. (2023b); Oko
et al. (2023); Yakovlev and Puchkin (2025a); Ding et al. (2025a). A second line of work
focuses on the adaptivity of the sampling procedure; see e.g., Li and Yan (2024); Huang
et al. (2024); Potaptchik et al. (2025). These works provide valuable insights for extending
Corollary 5.10 to achieve provable adaptivity across reference score estimation, sampling, and
guidance estimation, thereby completely eliminating dependence on the ambient dimension.
We leave this unified analysis, which is outside the scope of the current work, for future
research. Importantly, even within the current framework, the dependence on the ambient
dimension d remains only polynomial.

6 Conclusions

In this work, we proposed variationally stable Doob’s matching, a principled inference-time
alignment framework for diffusion models grounded in the theory of Doob’s h-transform.
Our approach reformulates guidance as the gradient of the logarithm of an underlying
Doob’s h-function, providing a mathematically consistent mechanism for tilting a pre-trained
diffusion model toward a target distribution without retraining the reference score network.
By leveraging gradient-regularized regression, Doob’s matching simultaneously estimates both
the h-function and its gradient, thereby providing a consistent estimator for Doob’s guidance.

From a theoretical perspective, we established non-asymptotic convergence rates for the
proposed guidance estimator, showing that the estimated Doob’s guidance converges to the
true guidance under suitable choices of the hypothesis class and regularization parameter.
Building on this result, we further derived non-asymptotic convergence guarantees for the
induced controllable diffusion process, demonstrating that the generated distribution converges
to the target distribution in the 2-Wasserstein distance. These results provide an end-
to-end theoretical guarantees for inference-time aligned diffusion models that explicitly
account for guidance estimation error, reference score estimation error, initialization bias, and
discretization error. Furthermore, we show that our convergence rates depend solely on the
intrinsic dimension of the linear subspace rather than the ambient dimension. This highlights
the estimator’s adaptivity to low-dimensional structures, effectively mitigating the curse of
dimensionality.
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A Derivations in Section 3

Lemma A.1. The Doob’s h-transform h*(t,X;") defined as (3.7) is a martingale, and
satisfies the following SDE:

dh*(t,X;7) = VA*(t,X;) " V2dB;.

Proof of Lemma A.1. This proof is divided into two parts.
Part 1. Martingale. Due to the Markov property of the diffusion process X;~ (Oksendal,
2003, Theorem 7.1.2), using (3.7) implies

My = h*(t,X{7) = EF [w(X] )| 7).

It is apparent that M; is F;-measurable for each ¢t € (0,7, thus M; is adapted to IF. Then
we show that M, is integrable under IP. Indeed,

E"[|M:]] < E [EP[Jw(X7)||1F]] = EX [w(X])] = Z < oo,

where the first inequality holds from Jensen’s inequality, and the first equality used the law
of total expectation and the fact that w(X% ). We next show the martingale property. For
each0<s<t<T,

E"[M:|F] = EV[E" [w(XT)|F]IF] = B [w(X5)|F] = M,

where the second equality involves the tower property of conditional expectation, and the
fact that Fs C F;. Therefore, M; is a martingale.
Part 2. Stochastic dynamics. Applying I1t6’s formula to h*(t, X;~) yields

1
dh*(t, X)) = Oph* (¢, X)) dt + VR* (£, X;7) T dX; + 5 dX;) TV2R*(t, X)) dX
= Vh*(t,X;)"V2dBy,

where the last equality holds from the fact that martingale has zero drift. This completes the
proof. O
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Proposition 3.1. The Radon-Nikodym derivative process Ly, as defined in (3.5), admits the

following representation:
dQ h*(t, X;7)
L, = FP|=—= _ "\ )
=E 7] = By

where h* : [0,T] x RY — R, referred to as Doob’s h-function, is defined as the conditional
expectation of the terminal weight:
B (%) = EP[w(X{) | Xi = x].
Furthermore, the log-likelihood ratio satisfies the following SDE:
d(log L) = Vilog h*(t,X;7) "v/2dBy — ||V log h*(t, X;7)||3 dt.

Proof of Proposition 3.1. The proof is divided into three parts.
Part 1. The equivalent definition of L;. In this part, we aim to show the conditional
expectation in Proposition 3.1 is identical to the likelihood L; defined as (3.5). Define

_ dQ
_ P =
Li=FE [d]P]ft]
For each event A € F; C Fr, we have

dQ dQ -

A) = —le:/IE—}“ dIP:/Lle,
QA= | ap A [CUP’ t} At

where the second equality is due to A € F;. This means L; acts as the density for the measure

Q with respect to P when restricting to the o-algebra F;. Thus L; = L; for each ¢t € (0,T).

Part 2. The expression of Doob’s h-transform. It is straightforward that

EP[w(X5)IF] _ EPw(X0)|Xi] b X))
EPw(Xp)] | EPw(Xp)] | EPw(Xg))

1 e 48l -

where the second equality follows from (3.6), the third equality involves the Markovity of the
diffusion process X;~, and the last equality is due to the definition of the h-function (3.7).
Part 8. The stochastic dynamics of log-likelihood. We can now derive the dynamics of the
likelihood L;. Letting Z = E¥[w(X%)], we have:

1 *
dLe = — dh* (1, X]")

1
= E(Vh*(t,Xz_))T\/ﬁdBt
h*(t,X§) VR (6, XE) T
- 2dB
Z h*(t, X5 V2dB,

(A1) = Ly(Viogh*(t, X)) ' V2dBy,

where the second equality is due to Lemma A.1. Using It6’s formula for log-likelihood yields

dlog L) = 2 - (T4, 1)
= VAV logh* (1, X{) T dB, — 1 [V2V log h* (1, X{)[3 s
= V2Vlog h*(t,X;7) " dB; — ||V log h*(t, X:)||3 dt,
where the second equality is due to (A.1). This completes the proof. O
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Proposition 3.2. Let the reference process X;~ satisfy the SDE (2.3) under the path measure
P, and let Q be the target path measure defined by (3.6). Assume that the Novikov condition
holds:

]E]P[exp (/OT HVlogh*(s,X?)H%ds)} < 0.

Define a process (Bt)lgth by
dB; = dB, — V2V log h*(t,X;7) dt,

where By is a Brownian motion under IP. Then Et s a standard Brownian motion under Q.
Further, under the path measure Q, the reference process X;~ in (2.3) evolves according to:

dX; = (X§ 4 2Viogpr_(X;) + 2V log h* (¢, X;7)) dt + V2 dBy.

Proof of Proposition 3.2. The derivation proceeds in two steps.
Step 1. The Brownian motion under the target path measure Q. Using Proposition 3.1 and
noting that Lo = 1 as (3.6), we have

t
L, = exp (/0 Vlog h*(s,X)TV2dB; — ||V log h*(s,xg)ugds).

According to Karatzas and Shreve (1998, Corollary 5.13), the Novikov condition (3.8) implies
that L; is a martingale. Then applying Girsanov’s theorem (Oksendal, 2003, Theorem 8.6.6)
yields that B, is a Brownian motion under Q.

Step 2. Dynamics under the target path measure. Recall that under the reference path
measure [P, the process evolves as

dX§ = (X§ + 2V iog pr_(X{)) dt + V2 dBy,
where By is a P-Brownian motion. Substituting the relationship (3.9) into this SDE implies
dX; = (X + 2Vlogpr_+(X;7)) dt + V2(dB; + V2V log h* (¢, X;7) dt)
= (X{ 4+ 2Viogpr_(X{) + 2V log h* (¢, X§7)) dt + V2 dBy,
which is the dynamics of X;~ under the target path measure Q. This completes the proof. [

B Derivations in Section 4

Proposition 4.1. For every t € (0,T'), the Doob’s h-function hy in (3.7) minimizes the
implicit Doob’s matching loss (4.1). Further,

Ju(he) = EP [ he(X57) — by (XE)3) + V2,
where Vi = EP [Var(w(X4)|X;7)] is a constant independent of hy.
Proof of Proposition /.1. By a direct calculation, we have

Ti(he) = EP[[[he(X57) — w(X5)|[3]

(
= B [||he(X{7) = by (X§) + by (X§) — w(XE)|3]
(Bl) P I — P * — 1\ 2
= E"[[|7a(X57) = by (XO)N13] + EX [[I17F (X)) — w(XE)3]
(

2B [(hy(X{) — B (X, (XE) — w(X5))],
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where h; is defined as (3.7). For the second term in (B.1), we have

E" [[lh; (Xi7) = w(X7)3]
= EP[||E" [w(X{)[X{7] — w(X7) 3]
= EVE" [ E [w(X5) X ] - w(X5) 131X ]
(B.2) = E" [Var(w(X{)1X{7)],
where the first equality holds from the definition of A} (3.7), and the second equality is due
to the law of the total expectation. For the third term in (B.1), we find
E” [(he(X{7) = by (X{7), b (X7) — w(XF))]
E [ (e Xt — EP[w (X)X ], BP [w (X )1XT] — w(XT))]
E" [(he(X{7) — EP [w(X5) X ], BP [w(X$)1X{] - EF [w(X5) X))
0,

(B.3)

where the first equality holds from the definition of h; (3.7), and the second equality is due
to the law of the total expectation. Substituting (B.2) and (B.3) into (B.1) completes the
proof. O

Lemma B.1. Suppose Assumptions 1 and 2 hold. Assume that vy € H(pr—_;). Then

_(Vh;tkvv”t)LZ( = (Ahi + Vhi - VlOgPT—uUt)LZ(

PT—t) PT—t)"

Proof of Lemma B.1. We first construct a sequence of cut-off functions {3 }$2, C C§°(R?),
satisfying

(1) () = 1 for xlls < &,

(ii) ¢ ( ) =0 for ||x||2 > 2k,

(iii) ¥r(x) € (0,1) for x € R%, and

(iv) HVz/Jk(X)Hg < Ck~! for some constant C' independent of x and k.

See Brezis (2011, Theorem 8.7) for a detailed construction of such cut-off functions. Then we
focus on the compactly supported approximations {tyv:}72 ;:

—(Vhi, V(¥rve)) 2oy

= —/Rd(Vhf{(X),V(¢kvt)(x))pT—t(X) dx
=~ |V (Vhi (x)pr—e(x) (e (x)) dx + / V- (VR (X)pr—(x)) () (x) dx
R R

BA)= [ - (Vhi(x0pr—i(0) (wer)(x) dx

where we used the Gauss’s divergence theorem and the fact that vv; € Hg (B(0,k)) with
B(0,k) .= {x: ||x]|2 < k}. For the left-hand side of (B.4), we have

[ (9860, V) (9)pr-o(x) x
(B.5) = /R L e(x)(Vhy (x), Vou(x))pr-(x) dx + /m (TR, V) (9pr—a(x) dx.
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For the second term in (B.5), we have

[ (Th 00, V) oulxlpra() x|
= / VR G 2l Ve () l2lve(x) [pr—i(x) dx
R

<% e 1VRE G l2fur(x)[pr—(x) dx

o
S EHVht HLQ(pT,t)||thL2(pT,t)7

where the second inequality holds from the definition of the cut-off function, and the last
inequality is due to Cauchy-Schwarz inequality and the fact that h} € H'(p7_;), which is
a direct conclusion of Lemmas C.1 and C.4. Taking limitation with respect to £k — oo and
using Lebesgue’s dominated convergence theorem yields

(B.6) lim (Vhi(x), Vo (x)) v (x)pr—¢(x) dx = 0.

k—o0 JRd

Combining (B.4), (B.5), and (B.6) and taking limitation with respect to kK — oo completes
the proof. O

Proposition 4.2. Let A > 0, h} be the Doob’s h-function defined as (3.7), and h} be the
minimizer of J? defined as (4.3). Then hi € H?(pr_4), and

10 = hill72gp, ) < NIIARF + Vhy - Viog pri[72
||Vht Vh‘t”LQ(pT ) < )‘HAht +Vht Vlogpr— tHL2

(pr—t)’

(pT—¢)

Proof of Proposition 4.2. First, hf € H?(pr_¢) is a direct conclusion of Lemmas C.1, C.4,
and C.5. It remains to prove two inequalities. Using Proposition 4.1 and (4.3), we have

TNhe) = e = B[ Fagp )+ VE + M Vil
Since h} is the minimizer of 7, the methods of variation imply that for any v; € H'(pr_¢),
0T (it ve) = (B = i v) 2oy + MV, Vi) p2gpr_ ) = 0,
which implies

(hp — hy, V) L2(pr_y) + MNVhi = Vhy, VUt) L2 (pr )
= —MNVh;, vvt>L2(PT—t)
= MAQ; + Vhi - V1ogpr—1, ) 12(pr_,)»
where the last equality invokes Lemma B.1. Substituting v, :== hf‘ — hj yields
1 = B 122 pp )+ AIVAY = V{720,
= MAh} + Vhi - Viogpr—e, bt — hi) r2pp_,)
(B.7) < MAR; + Vhy - Viog pr—ill 2oy, l1he — il 2

th
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where the last inequality is due to Cauchy-Schwarz inequality. A direct conclusion is

112 = 1§32y < NN ART + Vhi -V log pr—i|Za

(pT—¢)

Then plugging this equality into (B.7) yields

IVhY = Vhi[[72 () < MART + Vhy - Viogpr—i|72

(pr—t)
which completes the proof. O

Proposition 4.3. Let A > 0, and h} be the minimizer of J; defined as (4.3). Then for any
he € H (pr_t), we have

AL A A 1 A AL A
m{\jt ht k7t (ht)} < ”ht - ht ||§{1(pT7t) < m{% (ht) — k7t (ht)}

Proof of Proposition /.3. Using Proposition 4.1 and (4.3), we have

T (he) = Ihe = Wi 2o,y + Vi + A VR4 72

(pT—t¢ (pr—¢)"

Since h} is the minimizer of J;), the methods of variation imply
(B.8) STNh ve) = (B = hi v 2oy ) + MVEY, Vo) r2pn ) =0,
for any v; € H'(pr—_¢). A direct calculation yields
TN he) = TN he — B + hy)
= he = + by = Bil[T2py,) + Vi + AV — VI + V72
= TP + he = 1122y + MV = VB T2, )

+2(hy — B} B = B 2oy + 2NV hy — VR, VY 12
= T (0) + 1he = W2y + A VR = V2

(pr—¢)

PT—t)

(pr—t)

where the last equality holds from (B.8). This completes the proof. O

C Derivations in Section 5.1

Lemma C.1. Suppose Assumption 2 holds. Then for allt € (0,T),
B<hi(x)<B, xecR<

Proof of Lemma C.1. A direct conclusion of Assumption 2 and the definition of Doob’s
h-function Ay (3.7). O

Lemma C.2 (Tweedie’s formula). Let t € (0,T"), and let X; be defined as (2.1). Then

X
Viogp(x) + — = M—;]E[XO\Xt =x], xecR%
9 Ot
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Proof of Lemma C.2. 1t is straightforward that

Vpi(x)
Viogp
t(x) = )
1
= 1 X — HtXo ) )
; 7pt(X) / ( o} )@d(x’ X0, 03 La)po(xo) dxo
1 x

T p(x) o} /(pd(x puxo, o7 14)po(x0) dxo

Mt / Po(x0)
+ Xopa(x; X0, 0714 dxg
0'132 ( t t ) pt(X)

X Mt
—? + ?]E[X(”Xt = X],
t t

where the second equality is due to (2.2), and last equality invokes the Bayes’ rule. This
completes the proof. O

Lemma C.3. Let g : R* — R? be an integrable function. Let t € (0,T), and let X; be
defined as (2.1). Then for each x € RY,

VxE[g(X0)|X; = x] = %COV(XDag(XO)‘Xt =X),
t

where the k-th entry of Cov(Xo, 9(X0)| X = x) is defined as Cov(Xo, 9(Xo)|X: = x) with
X = (XUJ? ey X(],d).

Proof of Lemma C.3. According to Bayes’ rule, we have

E[g(Xo)[X¢ = x] = (x; X0, 07 14)po(xo0) dxo.

Taking gradient with respect to x on both sides of the equality yields

1
VAElg(X0) X, = x] = s [ 000) V(s roxa, oo o)

- ZJ%QES) /Q(XO)SDd(X;MtXOJtQId)pO(XO)dXO

1 X — X
= —7/9(Xo)<$>sod(x 110, 0713)po(x0) dxo

pt( ) t
Vlo
ptgpt/g X0)d(X; X0, 07 1a)po(x0) dxo
po(Xo)

( log p¢(x 9(x0)pa(x; pixo, o7 Id) dxg

p(x)

X
+ %/Xog(xo)w(x Hth,UtId)};)(( 0)) dxo
t

= %(_ [XO|Xt = XHE[Q(X())’Xt = x] + IE[XOQ(X())|X,5 _ X])

= 55 Cov(Xo, 9(Xo) X, = x),
t
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where the fourth equality follows from Lemma C.2 and the Bayes’ rule. Here the k-th entry
of the conditional covariance Cov(Xo, g(Xo)|X; = x) is defined as Cov(Xq x, 9(Xo)|X; = x),
where Xo = (Xo,1,...,X0,4). This completes the proof. O

Lemma C.4. Suppose Assumptions 1 and 2 hold. Then for each x € R% and t > 0,

2B
max |Dph;(x)| < ——,
1<k<d oz,

where Dy, denote the differential operator with respect to the k-th entry of x.

Proof of Lemma C.j. According to the definition of Doob’s h-function h; (3.7) and the
property of the time-reversal process (2.3), we have

B (t,%) = EP[uw(X5)[X;™ = x] = Ew(Xo)[Xr— = x],

where the second expectation is with respect to the path measure of the forward process (2.1).
Then it follows from Lemma C.3 that

(C.1) Vi (x) = Zg—f Cov(Xo, w(Xo)|Xr—s = x).
T—t

Then it follows from Assumptions 1 and 2 that for each x € R?,
(C.2) [|Cov (X, w(Xp)|X7r—t = X)|loc = max, Cov(Xo , w(Xo)|Xr—t = x) < 2B.

Substituting (C.2) into (C.1) yields

« 2B
IV () oo = £ Cov(Xo, w(Xo) Xr—t = X)lloe < 53—
T 07—t
where we used the fact that p, = exp(—t) < 1. This completes the proof. O

Lemma C.5. Suppose Assumptions 1 and 2 hold. Then for each x € R% and t > 0,

6B
Uﬁ.ll‘—t 7

| Diehi (%) <

where Dig denote the second-order differential operator with respect to k-th and £-th entry.
Proof of Lemma C.5. Taking derivative with respect to the /-th entry of x on both sides
of (C.1) implies
(C.3) Dieh (x) = L5 DeCov(Xo s, w(Xo)| Xr—y = x).
T—t
It remains to estimate the derivative of the conditional covariance. Indeed,
DyCov(Xok, w(Xo)|Xr—t = %)
= D¢E[X¢ 1| X7_t = x]E[w(Xo)|X7_ = X]
+ E[Xo x| X7t = x] DE[w(Xo)[X1—¢ = x]
- Dg]E[X07kw(XQ)|XT,t = X]
HT—t

= 0_2 COV(XO’Z,X07k‘Xt = X)IE[U)(X())‘XT_t = X]
T—t
+ E[Xo % X1-t = X] fg—t Cov(w(Xo), Xo,¢| X1t = %)
T—t
- ﬁ?‘t Cov(Xorw(Xo), Xo,e|Xr—¢ = x),
T—t
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where the last equality holds from Lemma C.3. Concequently, for each x € R? and ¢ > 0,

6u_,B
(C.4) | DyCov (X, w(Xo)[Xr_y = x)| < 212

07—y

where we used Assumptions 1 and 2. Substituting (C.4) into (C.3) completes the proof. [

Proposition 5.1. Suppose Assumptions 1 and 2 hold. Then for allt € (0,T) and x € R?,
the following bounds hold:

(i) B < hi(x) < B;
(ii) maxi<g<d|Dih;(x)| < 2077, B; and
(i) maxyi<pe<a|DEhi(x)| < 6072, B,

where Dy, and DI%Z denote the first-order and second-order partial derivatives with respect to
the input coordinates, respectively.

Proof of Proposition 5.1. A direct conclusion of Lemmas C.1, C.4, and C.5. O

D Derivations in Section 5.2
D.1 Oracle inequality of variationally stable Doob’s matching.

Lemma 5.2. Suppose Assumptions 1 and 2 hold. Let t € (0,T) and let 7 be a hypothesis
class. Let h) be the gradient-reqularized empirical risk minimizer defined as (4.6), and let h}
be the Doob’s h-function defined as (3.7). Then the following inequalities hold:

{1 = 1§22y + AV = Vhi 1 F2r ) )
(VCdim(%))é \dB? (VCdiH}(Vﬂﬁ))é n \2dB?

E|[h} {32, ) < ,in

f
hi€ A,

—1 8 I
nlog™ " n 0Ty

1
nlog™ " n OF_y

T * . 1 * *
E[IVR} = Vi3, ] <, i, {510 =572, + 190 = Vhi T2, )

B? (VCdim(%)>% dB? (VCdim(Wﬁ))% N \dB?
A\ nlogin oy, N nlog7in o5 .’
where the notation < hides absolute constants.

Proof of Lemma 5.2. 1t follows from Proposition 4.3 and Lemma D.1 that
E[I32 = 132 p )| + NE[IVRY = VA2, ]
= E|7 () - T ()]

< inf {|Ihe =320 ) + VR = VA T2, )

hi€

: 1 52 - 1
VCdlm(ﬁﬁ)) 2 8/\dB (VCdlm(V%)) 2

-1 1

+ 8052
( nlog™ n nlog™ n

O-f.ll“—t
< it {20l — Bl o+ 2M VA~ VA2 o)
= = (prt) L (prt)

VCdim(%))% N 8AdB? <VCdim(Wﬁ))%

0%_t n log*1 n

+20|hf = e,y + 2AIVRE = VA2, ),

+ 80B2(

nlog~'n
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where the last inequality holds from the triangular inequality. Using the triangular inequality
again, we have

E[IR} = hill3agr_)| + NE[IVA} = VA 320, )]

< 2E[[|R} - h}[13
+2||R; — Bl (pr—1)

* (12
<, inf, {4llhe = B 320,y + ANV R = VB 32, ) )

(pT—t):| + 2)\]E|:tht Vh/t ||L2
)+ 2| VR — VR|[

th}

PT—t

(D'l) approximation error
_, VCdim(J%)\ 3 AdB? [VCdim(VJ4)\ 3
+16032(7mi(1 t))2+16 — ( im(% t))z
nlog™ ' n Or_y nlog™ " n

generalization error

+ 6|18 — BTy + OV, = VT2, -

regularization gap

Combining Proposition 4.2 and Lemma D.6 yields

. dB?
||h’t - h?”%ﬂ(pq«f” < 144)\2 8 )
(D.2) d(g;t
VR = VE 72,y < 144X ——.
Tt
Substituting (D.2) into (D.1) completes the proof. O

Lemma D.1. Suppose Assumptions 1 and 2 hold. Let t € (0,T) and let 7 be a hypothesis
class. Let h) be the gradient-reqularized empirical risk minimizer defined as (4.6). Then we
have

E[77 () = TX ()] < inf {1l =032,y + AV = VA, ) }
VCdim (%) )% N 8>\d]§2 (VCdim(V%) )%

nlog™'n nlog~'n

80 B2
" ( U%“—t

where the notation < hides absolute constants.
Proof of Lemma D.1. For any hy € 7, we have
T 0) = T ()
= TA0) = TR + TH03) = T k) + T (he) = T (he) + TP (he) = T ()
< T = TA) + T (he) = T (he) + T () = T (),
where the inequality holds from that fact that ?Lf‘ is the minimizer of jt’\ over the hypothesis
class J7;. Taking expectation on both sides of the inequality yields

E[JM(h) — TARN)] = E[FA(RY) — TAD] + T (he) — T (RY)

<E| sup J}(he) — T (he)| + TN (he) — TN(RD),

hiest;

39



Chang, Duan, Jiao, Xu, and Yang

where the equality holds from E[7;(h¢)] = J;(he) for each fixed hy, and the inequality is due
to hy € 7. By taking infimum on both sides of the inequality with respect to hy € 74, we
have

(D3)  E[F}(R) — FA()] < E| sup ﬁ(ht>—ﬁ<ht>]+ inf { T} (he) = TN}
ht€t hee At

L approximation error
generalization error bp

The rest of the proof is divided into three steps.
Step 1. Generalization error in (D.3).

For the generalization error in (D.3), we have the following decomposition:

]E[ sup J;(he) — j{\(ht)]

ht€;
1 < ;
= E[hsu%E[(ht(XT_t) - Y Z (he(X5_y) (XS))Q]
(D4) t €t i=1
(G1)
+)\]E[ sup E[[|Vhe(Xr—y)|3] —*ZHVht iTt)Hg}-
ht€ i=1
(G2)

We start from the term (G1) in (D.4). First, recall Proposition 4.1:
(D.5) E[(h(X7-t) — w(X0))?] = E[(he(Xr—¢) — hj(X7-1))?] + Vi

For the empirical counterpart, it is straightforward that

- % > (h(Xipy) — w(X())?
i=1
= —% Z(ht(XZT—t) - h;fk( %ﬂ_t) + ]E[’LU(XB”XZT_A _ UJ(X%)))Q
=1

— LS s - lz w(Xh) K] — w(Xp))?
i=1 i=1

3

= S () — 1 (X)) (B[ (X)X ] — (X))
=1

where the first equality invokes the definition of the Doob’s h-function A} in (3.7). Taking
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expectation with respect to {(X}, X% _,)}7 yields

]E[ sup E[(he(Xp_t) — (XO) lz he (X ¢) — (X%)))2]
hi€; i=1

3

= E[thEf]E[(ht(XT—t) — hy (X7-1))?] - Zn: he(Xip_y) — i (X ))2]

3

1 . o ,
+ 2B |~ > ha(Xi ) (B[w(Xg) [ X—q] - w(Xg))]
=1
i 1 3 . 1 B . i
6) < oap? (VLA g pa YOI G _ g o (VOAIMEA) 3
nlog™ n nlog nlog 1n

where the equality invokes (D.5), and the inequality holds from Lemmas D.2 and D.5. For
the term (G2) in (D.4), using Lemma D.3 implies

- 8dB? /VCdim(V.54) 5
D.7) E E[||Vh(X — = Vhi( '
(D.7) h?glf)ﬁ [IVhy (X t)H ZH (Xro)llz| < U%Lt( nlog~'n )

Substituting (D.6) and (D.7) into (D.4) yields a generalization error bound:

VCdim(.4) ) 5 8dB? <VCdim(Wﬁ) ) 3
nlog='n ‘

nlog='n U%,t

(D8)  E| sup J () —jﬁ(ht)} < 80B%(
| ht€H

Step 2. Approzimation error in (D.3). According to the proof of Proposition 4.3, we have
(D.9) TN he) = T (h) = [he = W Fa g,y + AV Re = VR 72
Step 3. Conclusion. Substituting (D.8) and (D.9) into (D.3) completes the proof. O

(pr—t)

D.2 Auxilary lemmas for the oracle inequality. According to the standard techniques
of symmetrization (Mohri et al., 2018, Theorem 3.3), we have the following generalization
bounds. We introduce the concept of Rademacher complexity (Bartlett and Mendelson, 2002;
Mohri et al., 2018), which is crucial for analyzing the generalization error.

Definition 3 (Rademacher complexity). Let 2 be a function class, and let X! :=
(X!,...,X") be a set of samples. The empirical Rademacher complexity of ./ with re-
spect to Xi.,, is defined as

R(A|XEM) =E| sup — Y h(XH) X"
e =] sy 150,
where €1,...,e, are i.i.d. Rademacher random variables. The Rademacher complexity of 7

is the expectation of empirical Rademacher complexity with respect to the distribution of
X7 defined as

R, () = E[R(#|X1")] = ]E[hsu};; - Zsl h(X?) }
€ =1

Lemma D.2. Suppose Assumptions 1 and 2 hold. Then

1o ‘ , _, (VCdim(4) 3
E| sup [[he — Bi||? = = Y ((Xy) = b (XEp_y)?| < 6487 (——
S e i = 3 S0~ i (K| < 6432 (S REE)
where the expectation is taken with respect to XlT_t, D, € ~bde g
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Proof of Lemma D.2. Let X%’_t, . ,X%’/_t be independent copies of X%p_t, oo, X, Let
€1,...,En be a set of i.i.d. Rademacher variables, which are independent of X%F’/_t, el X’%/_t
and X%Lt, ..., X%, It follows that

1 ,
E| sup ||h — K} =3 " (he(Xd bo))?
[ME%J’t 2 ry) — ng; H(Xp_y) — hi (X7_y))

1 ‘
<E| sup E[(hs(Xp_¢) — hj(X - b)?
= _htegﬁ [( t( Tt) t( Tt n; ( Tt))]
:]E_ sup E lzn:(ht(Xi’/ ) — lz”: R ( hi (X))
e | n &= T—t n & T—t
| 1< i %~ i -
<E| sup — Z {(ht(XI’Lt) —hy (Xflft))z — (he(X}) — By (Xt))Q}l
[ heestt T2y
[ 1< i R i -
=E| sup — Zgi{(ht(xflt) —hy (Xi“/ft))Q — (he(X7_y) — i ( T—t))z}‘|
Lheesti 2y
1 i cos ] -
(D.10) = 2E| sup — > ei(h(Xip_y) — hi(Xf_y))? | < 8BR.(H),
hie sty T i=1

where the second inequality holds from Jensen’s inequality, and last inequality is due to
Ledoux-Talagrand contraction inequality (Mohri et al., 2018, Lemma 5.7) and Lemma C.1.

It remains to bound the Rademacher complexity R, (#4) in (D.10). Let 6 > 0 and 7% be
an L°(XEn ) §-cover of 7 satisfying || = N (6, 56, L°(X%",)). Then for any h, € J4,
there exists h) € J#° such that

12 . 1 .
=N e (Xi) — =Y ehd(X)) <6
na= na

As a consequence,

R(A | XEn) = ]E[ sup — ZEzht ]

hiesty T i=1

IN

E| sup Zszh‘s (Xi) | Xk

h‘seﬁﬂ‘S n i=1

+90

IA
wu]]

+0

(2log N (6, A, L™ (X5™,))
n

ARSI
( Ogn t )2

- B )%+5,

where €1,...,&, are a sequence of i.i.d. Rademacher variables, the second inequality follows
from Massart’s lemma (Mohri et al., 2018, Theorem 3.7), and the equality is due to the
definition of ##°. Then setting § = B/\/n yields

2log N(B/+/n, %LOO(X%%))Y - SB(VCdim%))%

nlog=!'n

(D11)  %R(A | X52,) < B( .

where the last inequality holds from Anthony et al. (1999, Theorem 12.2). Substituting (D.11)
into (D.10) completes the proof. O
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By a similar argument as Lemma D.2, we have the following generalization bounds for
the gradient term.

Lemma D.3. Suppose Assumptions 1 and 2 hold. Then

8dB2 VCdim (V.54
E| sup [[Vh? Vha( ’
[htegft [ tHLQ(pT t) Z IV he( ‘ O'%_t ( nlog™ In )
where the expectation is taken with respect to X, ... Xb  ~td pp

Proof of Lemma D.3. 1t is straightforward that
1 & i 2
E| sup [|Vhe|Z2,_,) — EZHV’H( )2

hie A
n
Z (Dyhy( 2]

VCdim (D 8dB? ;VCdim(V4)\ 3
< Z ( (D, )) ( ( ))

1
< IE bup ||tht|| 2 - =

= or_, nlogtn - Uélp_t nlog~tn
where the first inequality holds from the convexity of supremum and Jensen’s inequality, the
second inequality invokes a similar argument as Lemma D.2, and the last inequality holds

from the definition of VCdim(V.74). This completes the proof. O
The following lemma is an extension of Bartlett and Mendelson (2002, Lemma 4).

Lemma D.4. Let z = (z1,...,2,) € 2 CR"™. Let &,...,&, be a sequence of i.i.d. random
variables with |&;| < K and E[§;] =0 for each 1 <i <n. Then it follows that

]Elsup Zézzl <2KIE[sup 2612117

zeZ N ;T zeZ 1 .7
where €1, ...,&n 18 a sequence of i.i.d. Rademacher variables.
Proof of Lemma D.J. The proof relies on the symmetrization technique. Let &, ... &), be

independent copies of &1,...,&,. It follows that

lsup Zgzzz] = [SUPIE[ i 57, Zi
zcz 1

z€Z

s

T P

ZEZ n i=1
< 2KE [sup Z&ZZ] ,

where the first equality due to E[£/] = 0, the first inequality holds from Jensen’s inequality,
and the second equality follows from the fact that distribution of (& —¢}) is symmetric around
zero, so it has the same distribution as £;(§ — &/). The second inequality comes from the
triangular inequality for the supremum, and we used the fact that & and & are identically
distributed. The last inequality invokes Ledoux-Talagrand contraction inequality (Mohri
et al., 2018, Lemma 5.7) and maxj<;<y, |§;| < K. This completes the proof. O

< 2E| sup — 251&2’2

zczZ N
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Lemma D.5. Suppose Assumptions 1 and 2 hold. Then

, , . _, (VCdim(J4)\ 3
sup L3 X5) - Efw(X}) | Xir_) |X%zt] < 165 (YOImA) )
heesty nlog™ " n
where the expectation is taken with respect to XlT_t, .. ,XiT_t Ay

Proof of Lemma D.5. Define a sequence of auxilary random variables
& = w(Xp) — Efw(Xp) | X7_y).
It is apparent that E[¢; | X} ,] = 0, and |¢;| < B. Using Lemma D.4 yields

E sup— Eihi( Xhin
Sup 22:1 H(X7_y) | X7

< 2BE| sup fZEth (X5, | XEm
heesty V4

= QBER(‘%? ’ XT—t))

where €1, ...,&, is a sequence of i.i.d. Rademacher variables. Here the first inequality follows
from Lemma D.4, and the second inequality is due to the fact that hi‘ € J, the second
inequality holds from Lemma D.4. Finally, using (D.11) completes the proof. O

Lemma D.6. Suppose Assumptions 1 and 2 hold. Then

12V/dB B

UTt

|AR; + Vi -V log pr—i| 2

(pr—t) =

Proof of Lemma D.6. By applying the triangular inequality, we have
ARy + VR - Viogpr—i| 2

PT t
< AR 2 (py ) + [IVRE - Viogpr—ill r20py )
6vVdB 2B
(D.12) < ——+ IV 1ogpr—tllr2(pr_,)s
014 UT—t

where the last inequality holds from Lemmas C.4 and C.5. It remains to estimate the
L?(pp—¢)-norm of the score Vlogpr_; in (D.12). Indeed,

v long—tH%%prt)

X —
— [ ==~ B EXoXr—s = x][Bpr-i(x) dx
2

07—t 07—t

2dp3._
< ——E[|IXg_llf] + =
T— T—t
9 2dp3.
= T{u%_t]E[HXoH%] + 2ur—torE[(Xo, €)] + ff%_tlE[HeH%]} + =
T—t T—t
92 2du_ 6d
D.13) = —{u2 E[|Xol? 2. EJ[|e|? Tt
(0-13) = ——{dE[IXol}] +oF Elel3] | + 5= < =

where the first equality is owing to Lemma C.2, the first inequality used Assumption 1, and

the second and third equalities hold from Xp_; 4 pr—tXo + or—e where Xg is independent
e ~ N(0,1;). The last inequality also uses Assumption 1. Substituting (D.13) into (D.12)
completes the proof. ]
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D.3 Convergence rate of the Doob’s guidance estimation.

Lemma D.7. Suppose Assumptions 1 and 2 hold. Let R > 1, and let the hypothesis class
A be defined as (5.2) with L < C'log N and S < N9, then there exists hy € H such that

CBR?
hi — hf|| foo < ==
At — Pl oo (B(o,R)) < TN
. CBR
[Vhe = VR | L (B(0,R)) < @7

where C' is a constant only depending on d.

Proof of Lemma D.7. We first rescale the target function h} to B(0,1) by ¢;(z) = hj (Rz).
According to Ding et al. (2025b, Lemma 6), there exists g; € N(L,.S) such that

* Cl *
lgt = gt = (B0,1)) < Rz llgtllo2rays
!

* C *
IVge = Vil sy < 1197 lle2we).

where C’ is a constant only depending on d. Note that Dyg;(z) = RDihf(Rz) for each
1 <k <d, and D%,g;(z) = R?*D3,h}(Rz) for each 1 < k,¢ < d. Thus

C'R?

lge(R™) = | o< (B (o, r)) Hgt(Rfl') — 9 (R )l Bo.1)) <~z 17 ez (rays
N
* -1 C/R *
t tllL(B(O,R)) = H I V3t — VG ML= (B(0,1) = tllc?2(Rd)-
IVge(R™) — Vhy|| IIVQ( L) = Vg (R < - IRl
Setting h; = g;(R~!-), and using Lemmas C.1, C.4, and C.5 complete the proof. O

Lemma D.8 (Approximation error). Suppose Assumptions 1 and 2 hold. Let R > 1, and let
the hypothesis class 74 be defined as (5.2) with L < C'log N and S < N¢, then

B2log* N
(pr—t) = Jg“—tN4 )
B?log? N
% N2~

[he = R|[72
IVhe = VA2, ,) < C

provided that R? = (4du? + 8c%)log N*, where C is a constant only depending on d.

Proof of Lemma D.8. 1t is straightforward that for each R > 1,

I = |22y = / (he(x) — B (x))21{[x]|2 < R}pr—i(x) dx
(i)
+ / ho(x) = b3 () 21{||xla > R}pr—i(x) dx.

(if)

(D.14)
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For term (i) in (D.14), we have
/(ht(X) = hy(x))*1{|[xll2 < Rypr—i(x) dx

C?B?R4
(D.15) < sup (he(x) — hi(x))? < ———r,
Ixll2<R ' o N

where the second inequality holds from Lemma D.7. For term (ii) in (D.14), we have

/Hht(x) — by (¥)[31{[1x]l2 > R}pr—i(x) dx
R? )

D.16 < 4B?*Pr{||Xy_¢|2 > R} < 2973 B2 ————s
(D.16) <4B*Pr{|Xr—[2 > R} < exp (= jia 52

where the first inequality holds from Lemma C.1, and the second inequality is due to
Lemma G.1. Substituting (D.15) and (D.16) into (D.14) yields

C?B?R*

RZ
o5 N4 ) ’

* (12
(D.17) lhe = B lT20pp ) <  Adp? + 802

+ 24432 exp (
Similarly, for the gradient term, we have

IVhe = V{22, = / IVhe(x) = Vhi ()31 {]Ix]]2 < R}pr—+(x) dx

®
+ / IVhe(x) = Vh; (x)|31{[[x]]2 > R}pr—i(x) dx.

(if)

(D.18)

For term (i) in (D.18), we have
J19hu(x) = Thi (31 (x> < Rypr-i(0) dx

. C2B°R?
(D.19) < sup HVht(X)_Vht(X)”%SW’
Ix[l2<R IT—t

where the second inequality holds from Lemma D.7. For term (ii) in (D.18), we have

/IIVht(X) — Vhi (x)|[31{]|x[l2 > R}pr—+(x) dx

1682 B? R?
Pr{|[Xr_4llo > Ry <295 — _exp( - ——~——— ,
U%_t UXr—ll2 p< U%_t P ( 4du% + 80t2>

(D.20) <

where the first inequality holds from Lemma C.4, and the second inequality is due to
Lemma G.1. Substituting (D.19) and (D.20) into (D.18) yields

C?B%R? B2 R?
D.21 Vhy — Vh||7 < g 2018 -
(D.21) IVhe = Vhi e, < S5 2 o (= a2
Setting R? = (4du? + 807)log N* in (D.17) and (D.21) completes the proof. O
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Lemma D.9 (Generalization error). Suppose Assumptions 1 and 2 hold. Let the hypothesis
class 7 be defined as (5.2), then

VCdim(74)
VCdim(Vi4)

cLSlog(S),

<
< ¢L?S1log(LS),

where ¢ is an absolute constant.

Proof of Lemma D.9. Since 7 C N(L,S), using Bartlett et al. (2019, Theorem 7) implies
VCdim(7) < VCdim(N (L, S)) < e1LSlog(.9),

where ¢; is an absolute constant. According to Ding et al. (2025b, Lemma 13), we have
Vi, C N(caL,c3LS), where ¢y and c3 are absolute constants. Using Bartlett et al. (2019,
Theorem 7) again implies

VCdim(V.4) < ¢4L?Slog(LS),
where ¢4 is an absolute constant. This completes the proof. ]

Theorem 5.3. Suppose Assumptions 1 and 2 hold. Lett € (0,T). Set the hypothesis class
F4 as B
sup hy(x) < B, inf h(x) > B,
x€R? x€RY

<2072 B
150%, S, 1Pt Co)) = 207,

:%’é:: htGN(L,S):

where L = O(logn) and S = O(nﬁds). Let b)) be the gradient-regularized empirical risk
minimizer defined as (4.6), and let hy be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

A x12 -8 -2
JE[||v1oght —VloghtHLQ(pT_t)} < Cogdn o,

2
provided that the regularization parameter \ is set as A = O(n~ @8), where C is a constant
depending only on d, B, and B.

Proof of Theorem 5.3. Substituting Lemmas D.8, and D.9 into Lemma 5.2 yields

E[|[h? - mmMTJ

log* N log? N Nalog? N\ 3 A /Nelog* N\ 3 22
<ot 4 + 0N O ) h o (o )+ O
o%_ N 4N nlog™"n or_s s nlog™ n Op_¢

where C is a constant only depending on d and B, and we used the fact L < C’log N and
S < N in Lemma D.8. Similarly,

E[|Vh = VA [720pp )

C log*N +Clog2N C<Ndlog2N>; C (Nd10g4N>§ C\
- No§_ N4 o N2 X\nlog™in 0% ,\nlog~tn o5,
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By setting N = O(nﬁ) and \ = O(nfﬁ), we have

~\ 1 __4
]E[Hht ht||L2 (pr—+) ] S L 7 log" n,
(D.22) N =t

E[|VA} — VA2

2y
n_ 4+s log™ n.

<
(pr— t]N 8
07—y

Consequently,
IV log b — Vog hf|[72(,, )
B Hvﬁt Vhi Vhi Vhi2

= =~— + —=
h} h} h} hi L2 (pry)
< QHVJL? _ Yhf ‘ Vhi  Vhi 2
hi‘ hi‘ L2(pr—¢) hi L2(pr_y)

2 ~
< 2 I9B = Vi lag, 2§Hh?—h;i‘lliz(pm)

< ~ 755 Jog?
> g N og n,
where the second inequality is owing to Lemmas C.1 and C.4, and the last inequality holds

from (D.22). This completes the proof. O

E Derivations in Section 5.3

E.1 Error decomposition of the controllable diffusion models.

Lemma 5.5. Suppose Assumptions 1, 2, and 3 hold. Let gr_r, be the marginal density of
Z5 7, defined in (4.8). Then it follows that

KLy llar-5,) S 5 B S WEP I log i (X53) — ¥ o i (X5 ]

= k=0
B d*17?
+ ET’gref + dexp(—T) + U%OK,

where the notation < hides absolute constants.

Proof of Lemma 5.5. According to Chen et al. (2023a, Proposition C.3), we have

K-1

KL(qr, |Gr-n,) S KL(qr|a) + >_ BE? [[8(kh, Ziz,) — Vlog pr—sn(Zi)II3]
initial error k=0
base score error
K-1
+ 37 WEQ [V log hun(Zi5) — Vlog hiy (Zi3,)I13]
(E.1) P

Doob’s guidance error

+ Z [ R (19 togar(2) ~ Viogar_nZinI] at

discretization error
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where 7, is the density of a standard Gaussian distribution N (0,1,).
Step 1. Initial error in (E.1). Using Chen et al. (2023a, Lemma C.4), we have

(E.2) KL(grlva) < dexp(=T).

Step 2. Reference score error and Doob’s guidance error in (E.1). Under Assumption 2, it

is apparent that EP[w(X%)] > B and supyega h*(t,x) < B for each t € (Ty,T). Hence, the
density ratio is uniformly bounded

(E.3) sup gri(x) _ (%)

x€Rd pr—1(%) a ]E]P[ (XT )]

For the reference score error term in (E.1), it follows for each 0 < k < K — 1 that
ER [|[8(kh, Zi3,) — V log pr—xn(Ziz) 3]

— [ 18kt 2) = Vlog pr-in (=) 3ar-(2) dz

B
<=
B

= [ 8tet)  togr-iat B 1)

< 5 [ 180eR, %) — Vg pr 4 (0) oz () dx
_ é P (o — 112
= ZE” [[80kh, X[5) - V log pr_i(Xi)[3]

where the inequality holds from (E.3) and Hélder’s inequality. Consequently,

K-1
> BE? [[[8(kh, Zi,) — Vogpr—a(Zia)II3]
k=0
B S P || — —\ 2 B
(E4) <5 2 ME |8k, Xi5) = Viegpr-m(Xin) ] < T et
= k=0

where the last inequality is owing to Assumption 3. By a similar argument, we have

K-1

>~ HEQ [|[Vlog hun(Zis,) — V log hiy (Zis)13]
k=0
B K-1 P R )
(E.5) < 5 2 HE" [V log hun(Xi) — Vlog i (Xi)II3]
— k=0

Step 3. Discretization error in (E.1). According to Chen et al. (2023a, Lemma D.1), we have
dGyT

K )
for any t € (kh, (k + 1)h), provided that Vlogqr_; is G-Lipschitz for any t € (kh, (k + 1)h).
Then it remains to estimate the Lipschitz constant G. Using Lemmas C.2 and C.3 yields

(E.6) E®[||Viogar—«(Z{") — Viogar—in(Zi;)lI3] <

V2log gr_i(z) = - Id + ET=t VK[ Z|Z, = 2]
Op_ UT t
1
- Id+”T L Cov(Zo|Zs = 2).
JTft JTft
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As a consequence, for each 0 < kK < K — 1,

Gp < sup sup HV2 log g7—¢(2) ||op
te(To,T) z€R4

. d
(E.7) < sup + i [1Cov(Zo|Zi = 2)llop £ —-
te(To,T) OT—t  O1—¢ To

where the first inequality holds from the triangular inequality, and the second inequality is
due to the boundedness of Zy under Assumptions 1 and 2. Combining (E.6) and (E.7) implies

(k+1)h - o d*T1?
(E.8) Z/k @IV log ar—1(Zi) — Vlogar wm(Ziz)I3] d S S—.

o,

Step 4. Conclusions. Substituting (E.2), (E.4), (E.5), (E.8) into (E.1) completes the proof. [

Corollary E.1. Suppose Assumptions 1, 2, and 3 hold. Let 6 € (0,1). Set the hypothesis
classes {%”T_kh}kK::Ol as (5.2) with the same depth L and number of non-zero parameters S.
Let gr—m, be the marginal density of Zi 1, defined in (4.8). Then it follows that

C5? 1. (o}
- 2 - _To
o, — r-n < - tog (5108 (53))

where C' is a constant depending only on d, B, and B, and

2

= log (%) K> log ( %J) h < (S—log*1 (U%O)
52 ~ 52 62/’ ~ 0%0 52

52 o8 1 ats o8

2 -1 Tt T

Eop S 70’% log (7520)7 n 2 S log 2 ( 520).
0

Proof of Corollary E.1. Combining Theorem 5.3 and Lemma 5.5 yields

R c 2 1
KL(qr,llqr-m,) < T{ Tn ™~ a+8 log4 n+ Ta%oefef + O'%O exp(—T)+ T?0 — },
O-TO M H/_/ %/_/
) (ii) (iif) ()

where C' is a constant depending only on d, B, and B. By setting

1 T 0”‘111() 1 2 O’%()
2 o8 1 448 05
1 T da+8 Tt
ref % log (7520)’ n Z 75d+8 log 2 ( 520)7
we find
C62 1 of,
KL ar-1,) < ——log (= log (=2 ) ).
(anllar—n) < - 1og (5108 (73))
Finally, using Pinker’s inequality completes the proof. O
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E.2 Convergence rate of the controllable diffusion models.

Theorem 5.6. Suppose Assumptions 1, 2, and 3 hold. Let ¢ € (0,1). Set the hypothesis
classes { g }E5L as (5.2) with the same depth L and number of non-zero parameters

S as Theorem 5.3. Let qgr—1, be the marginal density of 2?_% defined in (4.8), and let
(M o Tr)sqr-m, defined as (4.9). Then it follows that

I 1
E W3 (00, (Mo Tr)sr-m,)| < Celog’ (g)
provided that the truncation radius R, the terminal time T, the step size h, the number of

steps K, the error of reference score €yet, the number of samples n for Doob’s matching, and
the early-stopping time Ty are set, respectively, as

1 /1 1 1 1 1
- s (= - - > = 2( - < 4 -1~
R =< log2 (6>, TAlog(EQ), KN€4log (52)’ h < e”log <€2)
1 1 at+s ¢ 1
2 2 -1 d+8
eig Sevlog (E—2>, n 2 38 log ™2 (6—2)
Here C' is a constant depending only on d, B, and B.

Proof of Theorem 5.6. According to the triangular inequality, we have
W3(qo, (M o Tr)sGr-1,) = 3W3(q0, Msar,) +3 W3 (Miar,, (M o Tr)rar,)
(i) (if)
+ 3W3((M o Tr)rar,, (M o Tr)sdr—m,) -
(iii)
Here the term (i) represents the early-stopping error, the term (ii) represents the truncation
error, while the term (iii) represents the error of controllable diffusion models (4.8). In the
rest of the proof, we bound these three errors, respectively.
Step 1. Bound the term (i) in (E.9). To estimate the 2-Wasserstein distance between
the target distribution gy and the scaled early-stopping distribution Myqr,, we begin by

producing a coupling of them. Let Zo ~ qo, and let € ~ N(0,1;) be independent of Zg.
Define Zr, = Zy + o7, u;ols. It is apparent that Zz, ~ M;qr,. Then

(E.9)

2 2
~ 0T, do,

(E.10) W5(q0, Myqr,) < E[[|Zo — Zr, [13] = 3°E[|le]3] = MTO
To To

Step 2. Bound the term (ii) in (E.9). Let Zg, ~ qr,. According to the definition of the
truncation operator Tg, the joint law of (Mi)l Zr,, ui)l Z1,15(0,r)(Z1,)) is a coupling of Myqr,
and (M o Tr)sqr,. Therefore,

Wg(MﬁQTO’ (Mo 7-R)ﬁQTO) < IE[HN;(}ZTO - N;OlzTolB(O,R)(ZTo)”g]

1
= — [ Iz~ 20 () 3ar, (2) a2
K,
1
= — [ Izl 1xepio.m)(2)ar, (=) dz
K,
1 1 4 1
< B2 [||Zg||5] Pr2{l|Zg, |2 > R}
K,
1 R?
< 2™ exp (- ——— ),
/‘QTO ( 4d,u2T0 + 80%0)
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where the second ineq holds from Cauchy-Schwarz inequality, and the last inequality is due
to Lemma G.3 and Corollary G.2. By setting R? = (4du%, + 80%,)log(e™"), we have

d2?
(E'll) WQZ(Mﬁqu (M o E)ﬁqT()) S —5 €.

Ky

Step 8. Bound the term (iii) in (E.9). Let Z ~ (Tg)sqr, and 2%} ~ (Tr)4@r—1, be optimal
coupled. This means

(E.12) Wi (Tr)sar,, (TR)zdr—m,) = E[|ZF, - Z4,113].
On the other hand, M;OIZ% ~ (Mo Tr)4qr, and M;OIZ% ~ (M o Tgr)4qr—m,- Hence,
W3 (Mo Tr)sar,, (M o Tr)sdr-,)

_ 15 1 ~
(E.13) < E[||lug, 27, — pp 27 |15]) = MTW22((TR)MT0, (TR)4@r-175)>
To

where the equality holds from (E.12). Then using Villani (2009, Theorem 6.15) and the data
processing inequality, we have

Ws (Tr)sary (Tr)sdr—1,) = 2R*||(Tr)sar, — (Tr)s@r—mn,|lTv
(E14) < 2R2||QT0 - (/]\T—To ||TV'

Combining (E.13) and (E.14) yields

2

N 2R N
Wi ((M o Tr)sar,, (M o Tr)sdr—m,) < HTHQTO —qr-nllTv
To

2R? C'e3
" kg, o
(4dp% + 802 )log(e™t) &3 1
0 0 . log2 (7)’

2
Ky Ty

2
(E.15) <
where C is a constant depending only on d, B, and B, and the second inequality holds from
Corollary E.1 with § = &3,
Step 4. Conclusion. Substituting (E.10), (E.11), and (E.15) into (E.9) yields

R do? — d2¢  2(4du?. + 802 )log(et) ¢'ed 1
W3(go, (M o TR)sGr—1,) S —5> + —g-€ + o To — log? ( )
My, M, Ky o1y

< C{O’%O +e+ ;;log?’ (é)},
0

where C' is a constant depending only on d, B, and B. Letting 0%0 = ¢, i.e., Ty < €, completes
the proof. O

F Derivations in Section 5.4

Proposition 5.7. Suppose Assumptions 4 and 2 hold. Then for any t € (0,T) and x € RY,
we have

hi(x) = hi(P"x) = Elw(PX%) | X =P 'x].
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Proof of Proposition 5.7. According to Assumption 4, a particle Xq following pg satisfies
Xy 2 PXo, X~ po-
We first establish the relations between p; and p;. It is straightforward that
pi(x) = / wa(x; X0, 07 La)po(xo0) dxo
= /SOd(X; mxg,U?Id)(/5pio(xo)]50(io)dio) dxg
= / (/@d(X;Mth,UtQId)5PiO (x0) dXo)ﬁo(io) dxo
= [ aloc pPo, 0T (%0) do

_d x — w;Pxoll2\ _
= (2m07) 2/GXP(—HWg0H2);4?0(X0)<31X0

207
4 I,-PP )x+PP'x — 1,,Px o
= (2n0}) 2/exp(— (e ) 557 a OHQ) 0(X0) dXo
t
4 I, - PP )x|2+ |PPTx — ;Px o
= (2m0?) 2/exp<— e Ll 2U| pt OHQ) 0(X0) dXo
t
4 I, — PP ")x|? P'x — wxol3\_ ,_ . ._
— (2702) 2exp<_ ¢ = ) H2>/exp<_ | 20;& OHQ)])O(XO)dXO
t t
- |(Ig —PPT)x|3\
(F.1) —eXp<— 207 )pt(P x),

where the seventh equality invokes the fact that (I; — PP T)x is orthogonal to PP T x — 1;PX,
the eighth equality is due to |Pv]||z = [|v||2 for each v € RY, and the last equality used (5.3).
Then by a similar argument as the density, we find

hr—(%) = E[w(Xo) | X; = x]

e (1x) / w(x0)a (3 X0, 07 Ta)po (x0) dxo

o (1X) / w(Pxo)pa(x; 11t PXo, 0714)po(X0) dXo

pt(lx) (2102)~% /w(Pio) exp ( @ —PPT)x +2::PTX _ MtPXOHQ) (%o) do
= pt(lx) ( |(Tq —;:Z)T x|3 /w Pxo)eq(P " x; X0, 0214)po(Xo) dXo
- @(STX)/W(PP_(O)%(PTX; X0, 0214)po(Xo) dXo

= E[w(PXy) | X; = P'x] = E[w(PX%) | X5, = P'x],

where the second and the eighth equalities are due to Bayes’ rule, the seventh equality holds
from (F.1). This completes the proof. O
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Proposition 5.8. Suppose Assumptions / and 2 hold. Then for allt € (0,T) and x € R,
the following bounds hold:

(i) B < h;(x) < B;
(ii) max)<g<q|Dyhi(%)| < 203, B; and
(ifi) maxi<ke<q |Dy,hi(X)| < 6072, B,

where Dy, and D,%e denote the first-order and second-order partial derivatives with respect to
the input coordinates, respectively.

Proof of Proposition 5.8. By the simialr argument as Lemmas C.1, C.4, and C.5, we conclude
the desired results. O

By a similar argument as Lemma D.8, we have the following approximation error bounds
for low-dimensional Doob’s h-function h; (5.4).

Lemma F.1 (Approximation error). Suppose Assumptions J and 2 hold. Let R > 1, and let
the hypothesis class 7 be defined as (5.5) with L < C'log N and S < N%', then

B2log* N
018“%]\74 ’

- B?log®? N
|V hy — VA2, < C——.
L2(pr—¢) Ug“_tNQ

<C

lhe = hillZ2 (0 <

provided that R? = (4du? + 807)log N*, where C is a constant only depending on d*.

Theorem 5.9. Suppose Assumptions 4 and 2 hold. Lett € (0,T). Set the hypothesis class
I as

sup hy(x) < B, inf hy(x) > B,
x€R4 x€R?

-2 D
502 2R, 1P GOl = 2 B

M= hy € N(L,S) :

where L = O(logn) and S = O(ndgi%). Let hy) be the gradient-regularized empirical risk
minimizer defined as (4.6), and let h; be the Doob’s h-function defined as (3.7). Then the
following inequality holds:

]E[HVlog?L? — Vlog h:”ZLQ(pT_t)} < Ca;étn_d*i% log? n,

2
provided that the regularization parameter X is set as A = O(n~ T+8), where C is a constant
depending only on d*, B, and B.

Proof of Theorem 5.9. Using the same arguments as the proof of Theorem 5.3 and applying
Lemma F.1 completes the proof. O
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G Auxilary Lemmas

Lemma G.1. Suppose Assumption 1 holds. Let Xy ~ p;. Then for each £ > 0,

2
d+1 B §
Pr{||Xt||22€}§2 exp( 4d,u?—|—80t2)'

Proof of Lemma G.1. According to Assumption 1, we have

(@) E[exp (L43X002)] < 2

Let € ~ N(0,1;). Then it follows that
Efexn (142)] B e (152)]
2

= (27r)*g /exp (HZHQ) exp ( — ”€2|%) de

(G.2) = (27)" % /exp (- ”Z”%) de < 2¢.

Notice that X; 4 weXo + o, where X ~ pp and € ~ N(0,1;) are independent. Therefore,

E[exp <4d/|ltX—t|rH§at)] ||MtX0+at€H2)]

4du3 + 8o?

(HMtXOHQ o loeells )]
2dp? + 40} 2dp? + 4o}

X 2
() JE e (150

exp (”’;f;(g"?)}m[exp(”ng‘@)} < g+t

exp (

IA
ss
@

ol

X

IN
&
e

E|
|
|
<E|

(G.3)

E

where the the first inequality follows from Cauchy-Schwarz inequality, the second inequality
holds from the independence of Xy and €, and the last inequality is due to (G.1) and (G.2).
Then we aim to bound the tail probability. For each & > 0, we have

1% 13 ¢
Pri|Xelz = £} = Pr{4dﬂ? 807 © 1du? +80?}

X, ||2 &2
=Pr{em (tes) = oo (o))

£ Xill5
<o (= gz e Blow (e

2
< 2d+1 o 5
- P ( 4du? + 8o} )’

where the first inequality invokes Markov’s inequality, and the last inequality is due to (G.3).
This completes the proof. ]

Corollary G.2. Suppose Assumptions 1 and 2 hold. Let Z; ~ q.. Then for each € > 0,

52
ez > €) <2t ow (- guatg)
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Proof of Corollary G.2. Under Assumptions 1 and 2, supp(qo) = supp(pp). The same argu-
ment as Lemma G.1 completes the proof. O

Lemma G.3. Suppose Assumptions 1 and 2 hold. Let Z; ~ q;. Then for each & > 0,
E[IZ5] < d*.

Proof of Lemma G.3. Let € ~ N(0,1;). It is straightforward that

E[|le]4] = 4r(#)r(g) < (d+4)

Since Z; 4 utZi + ore with Zg ~ qo independent of €, it follows from the triangular inequality
that

E[||Z¢||5] < 8u{E[||Zol|3] + 801 E[|le]l3]
< 8(d* + (d+ 4)?),

where we used the fact that p;, 0, < 1, and supp(qo) = supp(po) under Assumptions 1 and 2.
This completes the proof. ]
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