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Abstract. Deep Ritz methods (DRM) have been proven numerically to be efficient in
solving partial differential equations. In this paper, we present a convergence rate in
H1 norm for deep Ritz methods for Laplace equations with Dirichlet boundary condi-
tion, where the error depends on the depth and width in the deep neural networks and
the number of samples explicitly. Further we can properly choose the depth and width
in the deep neural networks in terms of the number of training samples. The main idea
of the proof is to decompose the total error of DRM into three parts, that is approxima-
tion error, statistical error and the error caused by the boundary penalty. We bound the

approximation error in H1 norm with ReLU2 networks and control the statistical error
via Rademacher complexity. In particular, we derive the bound on the Rademacher

complexity of the non-Lipschitz composition of gradient norm with ReLU2 network,
which is of immense independent interest. We also analyze the error inducing by the
boundary penalty method and give a prior rule for tuning the penalty parameter.
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Key words: Deep Ritz methods, convergence rate, Dirichlet boundary condition, approximation
error, Rademacher complexity.

1 Introduction

Partial differential equations (PDEs) are one of the fundamental mathematical models in
studying a variety of phenomenons arising in science and engineering. There have been
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established many conventional numerical methods successfully for solving PDEs in the
case of low dimension (d≤3), particularly the finite element method [8,9,25,37,44]. How-
ever, one will encounter some difficulties in both of theoretical analysis and numerical
implementation when extending conventional numerical schemes to high-dimensional
PDEs. The classic analysis of convergence, stability and any other properties will be
trapped into troublesome situation due to the complex construction of finite element
space [8, 9]. Moreover, in the term of practical computation, the scale of the discrete
problem will increase exponentially with respect to the dimension.

Motivated by the well-known fact that deep learning method for high-dimensional
data analysis has been achieved great successful applications in discriminative, gener-
ative and reinforcement learning [18, 22, 42], solving high dimensional PDEs with deep
neural networks becomes an extremely potential approach and has attracted much atten-
tions [2, 6, 21, 31, 38, 43, 48, 50]. Roughly speaking, these works can be divided into three
categories. The first category is using deep neural network to improve classical numer-
ical methods, see for example [19, 24, 45, 47]. In the second category, the neural operator
is introduced to learn mappings between infinite-dimensional spaces with neural net-
works [1, 28, 29]. For the last category, one utilizes deep neural networks to approximate
the solutions of PDEs directly including physics-informed neural networks (PINNs) [38],
deep Ritz method (DRM) [48] and weak adversarial networks (WAN) [50]. PINNs is
based on residual minimization for solving PDEs [2, 31, 38, 43]. Proceed from the varia-
tional form, [48–50] propose neural-network based methods related to classical Ritz and
Galerkin method. In [50], WAN are proposed inspired by Galerkin method. Based on
Ritz method, [48] proposes the DRM to solve variational problems corresponding to a
class of PDEs.

1.1 Related works and contributions

The idea using neural networks to solve PDEs goes back to 1990’s [12,26]. Although there
are great empirical achievements in recent several years, a challenging and interesting
question is to provide a rigorous error analysis such as finite element method. Several
recent efforts have been devoted to making processes along this line, see for example
[14, 15, 23, 30, 32, 34, 36, 41, 46]. In [32], least squares minimization method with two-
layer neural networks is studied, the optimization error under the assumption of over-
parametrization and generalization error without the over-parametrization assumption
are analyzed. In [30, 49], the generalization error bounds of two-layer neural networks
are derived via assuming that the exact solutions lie in spectral Barron space.

Dirichlet boundary condition corresponds to a constrained minimization problem,
which may cause some difficulties in computation. The penalty method has been applied
in finite element methods and finite volume method [4, 33]. It is also been used in deep
PDEs solvers [38, 48, 49] since it is not easy to construct a network with given values on
the boundary. We also apply penalty method to DRM with ReLU2 activation functions,
and obtain the error estimation in this work. The main contribution are listed as follows:
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• We derive a bound on the approximation error of deep ReLU2 network in H1 norm,
which is of independent interest, see Theorem 3.2. That is, for any u∗

λ∈H2(Ω), there

exist a ReLU2 network ūφ̄ with depth D≤ ⌈log2d⌉+3, width W ≤O
(
4d
⌈

1
ǫ −4

⌉d)

(where d is the dimension), such that

∥∥∥u∗
λ−ūφ̄

∥∥∥
2

H1(Ω)
≤ǫ2 and

∥∥∥Tu∗
λ−Tūφ̄

∥∥∥
2

L2(∂Ω)
≤Cdǫ2.

• We establish a bound on the statistical error in DRM with the tools of pseudo-
dimension, especially we give a bound on

EZi ,σi,i=1,...,n

[
sup

uφ∈N 2

1

n

∣∣∣∣∣∑
i

σi

∥∥∇uφ(Zi)
∥∥2

∣∣∣∣∣

]
,

i.e., the Rademacher complexity of the non-Lipschitz composition of gradient norm
and ReLU2 network, via calculating the Pseudo dimension of networks with both
ReLU and ReLU2 activation functions, see Theorem 3.3. The technique we used
here is also helpful for bounding the statistical errors to other deep PDEs solvers.

• We give an upper bound of the error caused by the Robin approximation without
additional assumptions, i.e., bound the error between the minimizer of the penal-
ized form u∗

λ and the weak solutions of the Laplace equation u∗, see Theorem 3.4,

‖u∗
λ−u∗‖H1(Ω)≤O(λ−1).

This result improves the one established in [23, 35, 36].

• Based on the above two error bounds we establish a nonasymptotic convergence
rate of deep Ritz method for Laplace equation with Dirichlet boundary condition.
We prove that if we set

D≤⌈log2d⌉+3, W≤O

4d

⌈(
n

logn

) 1
2(d+2)

−4

⌉d

,

and

λ∼n
1

3(d+2) (logn)
− d+3

3(d+2) ,

it holds that
EX ,Y

[
‖ûφ−u∗‖2

H1(Ω)

]
≤O

(
n
− 2

3(d+2) logn
)

,

where n is the number of training samples on both the domain and the boundary.
Our theory shed lights on how to choose the topological structure of the employed
networks and tune the penalty parameters to achieve the desired convergence rate
in terms of number of training samples.
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Recently, [35, 36] also study the convergence of DRM with Dirichlet boundary con-
dition via penalty method. However, the results of derive in [35, 36] are quite different
from ours. Firstly, the approximation results in [35, 36] is based on the approximation er-
ror of ReLU networks in Sobolev norms established in [20]. However, the ReLU network
may not be suitable for solving PDEs. In this work, we derive an upper bound on the
approximation error of ReLU2 networks in H1 norm, which is of independent interest.
Secondly, to analyze the error caused by the penalty term, [35, 36] assumed some addi-
tional conditions, and we do not need these conditions to obtain the error inducing by the
penalty. Lastly, we provide the convergence rate analysis involving the statistical error
caused by finite samples used in the SGD training, while in [35, 36] they do not consider
the statistical error at all. Moreover, to bound the statistical error we need to control the
Rademacher complexity of the non-Lipschitz composition of gradient norm and ReLU2

network, such technique can be useful for bounding the statistical errors to other deep
PDEs solvers.

The rest of this paper is organized as follows. In Section 2 we describe briefly the
model problem and recall some standard properties of PDEs and variational problems.
We also introduce some notations in deep Ritz methods as preliminaries. We devote
Section 3 to the detail analysis on the convergence rate of the deep Ritz method with
penalty, where various error estimations are analyzed rigorously one by one and the main
results on the convergence rate are presented. Some concluding remarks and discussions
are given in Section 4.

2 Preliminaries

Consider the following elliptic equation with zero-boundary condition

{
−∆u+wu= f , in Ω,

u=0, on ∂Ω,
(2.1)

where Ω is a bounded open subset of R
d, d>1, f ∈ L2(Ω) and w∈ L∞(Ω). Moreover, we

suppose the coefficient w satisfies w≥ c1>0 a.e.. Without loss of generality, we assume
Ω=[0,1]d. Define the bilinear form

a : H1(Ω)×H1(Ω)→R, (u,v) 7→
∫

Ω
∇u·∇v+wuv dx, (2.2)

and the corresponding quadratic energy functional by

L(u)= 1

2
a(u,u)−〈 f ,u〉L2(Ω). (2.3)

Lemma 2.1. [16] The unique weak solution u∗ ∈ H1
0(Ω) of (2.1) is the unique minimizer of

L(u) over H1
0(Ω). Moreover, u∗∈H2(Ω).
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Now we introduce the Robin approximation of (2.1) with λ>0 as below





−∆u+wu= f , in Ω,

1

λ

∂u

∂n
+u=0, on ∂Ω.

(2.4)

Similarly, we define the bilinear form

aλ : H1(Ω)×H1(Ω)→R, (u,v) 7→ a(u,v)+λ
∫

∂Ω
uv ds,

and the corresponding quadratic energy functional with boundary penalty

Lλ(u)=
1

2
aλ(u,u)−〈 f ,u〉L2(Ω)=L(u)+ λ

2
||Tu||2L2(∂Ω), (2.5)

where T means the trace operator.

Lemma 2.2. The unique weak solution u∗
λ ∈ H1(Ω) of (2.4) is the unique minimizer of Lλ(u)

over H1(Ω). Moreover, u∗
λ∈H2(Ω).

Proof. See Appendix A.1.

From the perspective of infinite dimensional optimization, Lλ can be seen as the pe-
nalized version of L. The following lemma provides the relationship between the mini-
mizers of them.

Lemma 2.3. The minimizer u∗
λ of the penalized problem (2.5) converges to u∗ in H1(Ω) as

λ→∞.

Proof. This result follows from Proposition 2.1 in [33] directly.

The deep Ritz method can be divided into three steps. First, one use deep neural
network to approximate the trial function. A deep neural network uφ :Rd→R

NL is defined
by

u0(x)= x,

uℓ(x)=σℓ(Aℓuℓ−1+bℓ), ℓ=1,2,··· ,L−1,

uφ=uL(x)=ALuL−1+bL,

where Aℓ∈R
Nℓ×Nℓ−1, bℓ∈R

Nℓ and the activation functions σℓ may be different for different
ℓ. The depth D and the width W of neural networks uφ are defined as

D= L, W=max{Nℓ : ℓ=1,2,··· ,L}.

∑
L
ℓ=1 Nℓ is called the number of units of uφ, and φ={Aℓ,bℓ}N

ℓ=1 is called the free parame-
ters of the network.

Definition 2.1. The class N α
D,W ,B is the collection of neural networks uφ which satisfies that
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(i) depth and width are D and W , respectively;

(ii) the function values uφ(x) and the squared norm of ∇uφ(x) are bounded by B;

(iii) activation functions are given by ReLUα, where α is the (multi-)index.

For example, N 2
D,W ,B is the class of networks with activation functions as ReLU2, and

N 1,2
D,W ,B is that with activation functions as ReLU1 and ReLU2. We may simply use N α if

there is no confusion.

Second, one use Monte Carlo method to discretize the energy functional. We rewrite
(2.5) as

Lλ(u)=|Ω| E
X∼U(Ω)

[‖∇u(X)‖2
2

2
+

w(X)u2(X)

2
−u(X) f (X)

]

+
λ

2
|∂Ω| E

Y∼U(∂Ω)

[
Tu2(Y)

]
, (2.6)

where U(Ω), U(∂Ω) are the uniform distribution on Ω and ∂Ω. We now introduce the
discrete version of (2.5) and replace u by neural network uφ, as follows

L̂λ(uφ)=
|Ω|
N

N

∑
i=1

[
‖∇uφ(Xi)‖2

2

2
+

w(Xi)u
2
φ(Xi)

2
−uφ(Xi) f (Xi)

]

+
λ

2

|∂Ω|
M

M

∑
j=1

[
Tu2

φ(Yj)
]

. (2.7)

We denote the minimizer of (2.7) over N 2 as ûφ, that is

ûφ=argmin
uφ∈N 2

L̂λ(uφ), (2.8)

where {Xi}N
i=1∼U(Ω) i.i.d. and {Yj}M

j=1∼U(∂Ω) i.i.d..

Finally, we choose an algorithm for solving the optimization problem, and denote uφA
as the solution by optimizer A.

3 Error analysis

In this section we prove the convergence rate analysis for DRM with deep ReLU2 net-
works. The following Theorem plays an important role by decoupling the total errors
into four types of errors.
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Theorem 3.1.

‖uφA−u∗‖2
H1(Ω)

≤ 4

c1∧1





inf
ū∈N 2

[
‖w‖L∞(Ω)∨1

2
‖ū−u∗

λ‖2
H1(Ω)+

λ

2
‖Tū−Tu∗

λ‖2
L2(∂Ω)

]

︸ ︷︷ ︸
Eapp

+2 sup
u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣

︸ ︷︷ ︸
Esta

+
[
L̂λ

(
uφA

)
−L̂λ

(
ûφ

)]

︸ ︷︷ ︸
Eopt




+2‖u∗

λ−u∗‖2
H1(Ω)︸ ︷︷ ︸

Epen

.

Proof. Given uφA ∈ H1(Ω), we can decompose its distance to the weak solution of (2.1)
using triangle inequality

‖uφA−u∗‖H1(Ω)≤‖uφA−u∗
λ‖H1(Ω)+‖u∗

λ−u∗‖H1(Ω). (3.1)

First, we decouple the first term into three parts. For any ū∈N 2, we have

Lλ

(
uφA

)
−Lλ (u

∗
λ)

=Lλ

(
uφA
)−L̂λ

(
uφA
)
+L̂λ

(
uφA
)−L̂λ

(
ûφ

)
+L̂λ

(
ûφ

)−L̂λ(ū)

+L̂λ (ū)−Lλ(ū)+Lλ(ū)−Lλ (u
∗
λ)

≤ [Lλ(ū)−Lλ (u
∗
λ)]+2 sup

u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣+
[
L̂λ

(
uφA

)
−L̂λ

(
ûφ

)]
.

Since ū can be any element in N 2, we take the infimum of ū

Lλ

(
uφA

)
−Lλ(u

∗
λ)≤ inf

ū∈N 2
[Lλ(ū)−Lλ (u

∗)]+2 sup
u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣

+
[
L̂λ

(
uφA

)
−L̂λ

(
ûφ

)]
. (3.2)

For any u∈N 2, set v=u−u∗
λ, then

Lλ(u)=Lλ(u
∗
λ+v)

=
1

2
〈∇(u∗

λ+v),∇(u∗
λ+v)〉L2(Ω)+

1

2
〈u∗

λ+v,u∗
λ+v〉L2(Ω;w)−〈u∗

λ+v, f 〉L2(Ω)

+
λ

2
〈T(u∗

λ+v),T(u∗
λ+v)〉L2(∂Ω)

=Lλ(u
∗
λ)+〈∇u∗

λ,∇v〉L2(Ω)+〈u∗
λ,v〉L2(Ω;w)−〈v, f 〉L2(Ω)+λ〈Tu∗

λ,Tv〉L2(∂Ω)

+
1

2
〈∇v,∇v〉L2(Ω)+

1

2
〈v,v〉L2(Ω;w)+

λ

2
〈Tv,Tv〉L2(∂Ω)

=Lλ(u
∗
λ)+

1

2
〈∇v,∇v〉L2(Ω)+

1

2
〈v,v〉L2(Ω;w)+

λ

2
〈Tv,Tv〉L2(∂Ω),
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where the last equality comes from the fact that u∗
λ is the minimizer of (2.5). Therefore

Lλ(u)−Lλ(u
∗
λ)=

1

2
〈∇v,∇v〉L2(Ω)+

1

2
〈v,v〉L2(Ω;w)+

λ

2
〈Tv,Tv〉L2(∂Ω),

that is

c1∧1

2
‖u−u∗

λ‖2
H1(Ω)≤Lλ(u)−Lλ(u

∗
λ)−

λ

2
‖Tu−Tu∗

λ‖2
L2(∂Ω)

≤
‖w‖L∞(Ω)∨1

2
‖u−u∗

λ‖2
H1(Ω). (3.3)

Combining (3.2) and (3.3), we obtain

‖uφA−u∗
λ‖2

H1(Ω)

≤ 2

c1∧1

{
Lλ(uφA)−Lλ(u

∗
λ)−

λ

2
‖TuφA−Tu∗

λ‖2
L2(∂Ω)

}

≤ 2

c1∧1

{
inf

ū∈N 2
[Lλ (ū)−Lλ(u

∗
λ)]+2 sup

u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣

+
[
L̂λ

(
uφA

)
−L̂λ

(
ûφ

)]}

≤ 2

c1∧1

{
inf

ū∈N 2

[
‖w‖L∞(Ω)∨1

2
‖ū−u∗

λ‖2
H1(Ω)+

λ

2
‖Tū−Tu∗

λ‖2
L2(∂Ω)

]

+2 sup
u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣+
[
L̂λ

(
uφA
)−L̂λ

(
ûφ

)]
}

. (3.4)

Substituting (3.4) into (3.1), it is evident to see that the theorem holds.

The approximation error Eapp describes the expressive power of the ReLU2 networks
N 2 in H1 norm, which corresponds to the approximation error in FEM known as the
Céa’s lemma [9]. The statistical error Esta is caused by the Monte Carlo discretization of
Lλ(·) defined in (2.5) with L̂λ(·) in (2.7). While, the optimization error Eopt indicates the
performance of the solver A we utilized. In contrast, this error is corresponding to the
error of solving linear systems in FEM. In this paper we consider the scenario of perfect
training with Eopt = 0. The error Epen caused by the boundary penalty is the distance
between the minimizer of the energy with zero boundary condition and the minimizer of
the energy with penalty.

3.1 Approximation error

Theorem 3.2. Assume ‖u∗
λ‖H2(Ω)≤ c2, then there exist a ReLU2 network ūφ̄ ∈N 2 with depth

and width satisfying

D≤⌈log2 d⌉+3, W≤4d

⌈
Cc2

ε
−4

⌉d
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such that ∥∥∥u∗
λ−ūφ̄

∥∥∥
2

H1(Ω)
≤ǫ2 and

∥∥∥Tu∗
λ−Tūφ̄

∥∥∥
2

L2(∂Ω)
≤Cdǫ2

and

Eapp≤
(
‖w‖L∞(Ω)∨1

2
+

λCd

2

)
ε2,

where C is a genetic constant and Cd>0 is a constant depending only on Ω.

Proof. Our proof is based on some classical approximation results of B-splines [11, 40].
Let us recall some notation and useful results. We denote by πl the dyadic partition of
[0,1], i.e.,

πl : t
(l)
0 =0< t

(l)
1 < ···< t

(l)

2l−1
< t

(l)

2l =1,

where t
(l)
i = i·2−l(0≤ i≤2l). The cardinal B-spline of order 3 with respect to partition πl

is defined by

N
(3)
l,i (x)=(−1)k

[
t
(l)
i ,··· ,t(l)i+3,(x−t)2

+

]
·
(

t
(l)
i+3−t

(l)
i

)
, i=−2,··· ,2l−1,

which can be rewritten in the following equivalent form,

N
(3)
l,i (x)=22l−1

3

∑
j=0

(−1)j

(
3
j

)
(x−i2−l− j2−l)2

+, i=−2,··· ,2l−1. (3.5)

The multivariate cardinal B-spline of order 3 is defined by the product of univariate car-
dinal B-splines of order 3, i.e.,

N
(3)
l,i (x)=

d

∏
j=1

N
(3)
l,ij

(
xj

)
, i=(i1,··· ,id) , −3< ij <2l.

Denote
S
(3)
l ([0,1]d)=span{N

(3)
l,i , −3< ij <2l , j=1,2,··· ,d}.

Then, the element f in S
(3)
l ([0,1]d) are piecewise polynomial functions according to par-

tition πd
l with each piece being degree 2 and in C1([0,1]d). Since

S
(3)
1 ⊂S

(3)
2 ⊂S

(3)
3 ⊂··· ,

we can further denote

S(3)([0,1]d)=
∞⋃

l=1

S
(3)
l ([0,1]d).

The following approximation result of cardinal B-splines in Sobolev spaces is a direct
consequence of theorem 3.4 in [39], which plays an important role in this proof.
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Lemma 3.1. Assume u∗∈H2([0,1]d), there exists {ej}(2
l−4)d

j=1 ⊂R with l>2 such that

‖u∗−
(2l−4)d

∑
j=1

ejN
(3)
l,ij

‖H1(Ω)≤
C

2l
‖u∗‖H1(Ω),

where C is a constant only depend on d.

Lemma 3.2. The multivariate B-spline N
(3)
l,i (x) can be implemented exactly by a ReLU2 network

with depth ⌈log2d⌉+2 and width 4d.

Proof. Denote

σ(x)=

{
x2, x≥0,

0, else,

as the activation function in ReLU2 network. By definition of N
(3)
l,i (x) in (3.5), it’s clear

that N
(3)
l,i (x) can be implemented by ReLU2 network without any error with depth 2 and

width 4. On the other hand ReLU2 network can also realize multiplication without any
error. In fact, for any x,y∈R,

xy=
1

4
[(x+y)2−(x−y)2]=

1

4
[σ(x+y)+σ(−x−y)−σ(x−y)−σ(y−x)].

Hence multivariate B-spline of order 3 can be implemented by ReLU2 network exactly
with depth ⌈log2 d⌉+2 and width 4d.

For any ǫ> 0, by Lemma 3.1 and 3.2 with 1
2l ≤

⌈
C‖u∗‖

H2

ǫ

⌉
, there exists ūφ̄ ∈N 2, such

that ∥∥∥u∗
λ−ūφ̄

∥∥∥
H1(Ω)

≤ǫ. (3.6)

By the trace theorem, we have

‖Tu∗
λ−Tūφ̄‖L2(∂Ω)≤C1/2

d

∥∥∥u∗
λ−ūφ̄

∥∥∥
H1(Ω)

≤C1/2
d ǫ, (3.7)

where Cd > 0 is a constant depending only on Ω. The depth D and width W of ūφ̄ are

satisfying D≤⌈log2d⌉+3 and W≤4dn=4d
⌈

C‖u∗‖
H2

ǫ −4
⌉d

, respectively. Combining (3.6)

and (3.7), we arrive at the result.
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3.2 Statistical error

In this section, we bound the statistical error

Esta=2 sup
u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣.

For simplicity of presentation, we use c3 to denote the upper bound of f , w and suppose
c3≥B, that is

‖ f‖L∞(Ω)∨‖w‖L∞(Ω)∨B≤ c3<∞.

First, we need to decompose the statistical error into four parts, and estimate each one.

Lemma 3.3.

sup
u∈N 2

∣∣∣Lλ(u)−L̂λ(u)
∣∣∣≤

3

∑
j=1

sup
u∈N 2

∣∣∣Lλ,j(u)−L̂λ,j(u)
∣∣∣+ λ

2
sup

u∈N 2

∣∣∣Lλ,4(u)−L̂λ,4(u)
∣∣∣,

where

Lλ,1(u)= |Ω| E
X∼U(Ω)

[‖∇u(X)‖2
2

2

]
, L̂λ,1(u)=

|Ω|
N

N

∑
i=1

[‖∇u(Xi)‖2
2

2

]
,

Lλ,2(u)= |Ω| E
X∼U(Ω)

[
w(X)u2(X)

2

]
, L̂λ,2(u)=

|Ω|
N

N

∑
i=1

[
w(Xi)u

2(Xi)

2

]
,

Lλ,3(u)= |Ω| E
X∼U(Ω)

[u(X) f (X)], L̂λ,3(u)=
|Ω|
N

N

∑
i=1

[u(Xi) f (Xi)],

Lλ,4(u)= |∂Ω| E
Y∼U(∂Ω)

[
Tu2(Y)

]
, L̂λ,4(u)=

|∂Ω|
M

M

∑
j=1

[
Tu2(Yj)

]
.

Proof. It is easy to verified by triangle inequality.

We use µ to denote U(Ω)(U(∂Ω)). Given n= N(M) i.i.d samples Zn = {Zi}n
i=1 from

µ, with Zi = Xi (Yi)∼ µ, we need the following Rademacher complexity to measure the
capacity of the given function class N restricted on n random samples Zn.

Definition 3.1. The Rademacher complexity of a set A⊆Rn is defined as

R(A)=EΣn

[
sup
a∈A

1

n

∣∣∣∣∣∑
i

σiai

∣∣∣∣∣

]
,

where Σn = {σi}n
i=1 are n i.i.d Rademacher variables with P(σi =1) =P(σi =−1) = 1/2. The

Rademacher complexity of function class N associated with random sample Zn is defined as

Rn(N )=EZn,Σn

[
sup
u∈N

1

n

∣∣∣∣∣∑
i

σiu(Zi)

∣∣∣∣∣

]
.
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For the sake of simplicity, we deal with last three terms first.

Lemma 3.4. Suppose that ψ : R
d×R →R, (x,y) 7→ψ(x,y) is ℓ-Lipschitz continuous on y for

all x. Let N be classes of functions on Ω and ψ◦N = {ψ◦u : x 7→ψ(x,u(x)),u∈N}. For any
n∈N≥1,

Rn(ψ◦N )≤ ℓ Rn(N ).

Proof. Corollary 3.17 in [27].

Lemma 3.5.

EZN

[
sup

u∈N 2

∣∣∣Lλ,2(u)−L̂λ,2(u)
∣∣∣
]
≤ c2

3RN(N 2),

EZN

[
sup

u∈N 2

∣∣∣Lλ,3(u)−L̂λ,3(u)
∣∣∣
]
≤ c3RN(N 2),

EZM

[
sup

u∈N 2

∣∣∣Lλ,4(u)−L̂λ,4(u)
∣∣∣
]
≤2c3RM(N 2).

Proof. Suppose |y|< c3. Define

ψ2(x,y)=
w(x)y2

2
, ψ3(x,y)= f (x)y, ψ4(x,y)=y2.

According to the symmetrization method, we have

EZN

[
sup

u∈N 2

∣∣∣Lλ,2(u)−L̂λ,2(u)
∣∣∣
]
≤RN(ψ2◦N 2),

EZN

[
sup

u∈N 2

∣∣∣Lλ,3(u)−L̂λ,3(u)
∣∣∣
]
≤RN(ψ3◦N 2),

EZM

[
sup

u∈N 2

∣∣∣Lλ,4(u)−L̂λ,4(u)
∣∣∣
]
≤RM(ψ4◦N 2).

(3.8)

The result will follow from Lemma 3.4 and (3.8) directly, if we can show that ψi(x,y),
i=2,3,4 are c2

3, c3, 2c3-Lipschitz continuous on y for all x, respectively. For arbitrary y1, y2

with |yi|≤ c3, i=1,2,

|ψ2(x,y1)−ψ2(x,y2)|=
∣∣∣∣
w(x)y2

1

2
−w(x)y2

2

2

∣∣∣∣=
|w(x)(y1+y2)|

2
|y1−y2|≤ c2

3|y1−y2|,

|ψ3(x,y1)−ψ3(x,y2)|= | f (x)y1− f (x)y2|= | f (x)||y1−y2|≤ c3|y1−y2|,
|ψ4(x,y1)−ψ4(x,y2)|=

∣∣y2
1−y2

2

∣∣= |y1+y2||y1−y2|≤2c3|y1−y2|.
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We now turn to the most difficult term in Lemma 3.3. Since gradient is not a Lipschitz
operator, Lemma 3.4 does not work and we can not bound the Rademacher complexity
in the same way.

Lemma 3.6.

EZN

[
sup

u∈N 2

∣∣∣Lλ,1(u)−L̂λ,1(u)
∣∣∣
]
≤RN(N 1,2).

Proof. Based on the symmetrization method, we have

EZN

[
sup

u∈N 2

∣∣∣Lλ,1(u)−L̂λ,1(u)
∣∣∣
]
≤EZN ,ΣN

[
sup

u∈N 2

1

N

∣∣∣∣∣∑
i

σi‖∇u(Zi)‖2

∣∣∣∣∣

]
. (3.9)

The proof of (3.9) is a direct consequence of the following claim.

Claim: Let u be a function implemented by a ReLU2 network with depth D and width
W . Then ‖∇u‖2

2 can be implemented by a ReLU-ReLU2 network with depth D+3 and
width d(D+2)W .

Denote ReLU and ReLU2 as σ1 and σ2, respectively. As long as we show that each
partial derivative Diu(i = 1,2,··· ,d) can be implemented by a ReLU-ReLU2 network re-

spectively, we can easily obtain the network we desire, since, ‖∇u‖2
2=∑

d
i=1 |Diu|2 and the

square function can be implemented by x2=σ2(x)+σ2(−x).
Now we show that for any i= 1,2,··· ,d, Diu can be implemented by a ReLU-ReLU2

network. We deal with the first two layers in details since there are a little bit difference
for the first two layer and apply induction for layers k≥3. For the first layer, since σ

′
2(x)=

2σ1(x), we have for any q=1,2··· ,n1,

Diu
(1)
q =Diσ2

(
d

∑
j=1

a
(1)
qj xj+b

(1)
q

)
=2σ1

(
d

∑
j=1

a
(1)
qj xj+b

(1)
q

)
·a(1)qi .

Hence Diu
(1)
q can be implemented by a ReLU-ReLU2 network with depth 2 and width 1.

For the second layer,

Diu
(2)
q =Diσ2

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

)
=2σ1

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

)
·

n1

∑
j=1

a
(2)
qj Diu

(1)
j .

Since σ1

(
∑

n1
j=1 a

(2)
qj u

(1)
j +b

(2)
q

)
and ∑

n1
j=1 a

(2)
qj Diu

(1)
j can be implemented by two ReLU-ReLU2

subnetworks, respectively, and the multiplication can also be implemented by

x·y= 1

4

[
(x+y)2−(x−y)2

]

=
1

4
[σ2(x+y)+σ2(−x−y)−σ2(x−y)−σ2(−x+y)] ,
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we conclude that Diu
(2)
q can be implemented by a ReLU-ReLU2 network. We have

D
(

σ1

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

))
=3, W

(
σ1

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

))
≤W

and

D
(

n1

∑
j=1

a
(2)
qj Diu

(1)
j

)
=2, W

(
n1

∑
j=1

a
(2)
qj Diu

(1)
j

)
≤W .

Thus D
(

Diu
(2)
q

)
=4, W

(
Diu

(2)
q

)
≤max{2W ,4}.

Now we apply induction for layers k≥3. For the third layer,

Diu
(3)
q =Diσ2

(
n2

∑
j=1

a
(3)
qj u

(2)
j +b

(3)
q

)
=2σ1

(
n2

∑
j=1

a
(3)
qj u

(2)
j +b

(3)
q

)
·

n2

∑
j=1

a
(3)
qj Diu

(2)
j .

Since

D
(

σ1

(
n2

∑
j=1

a
(3)
qj u

(2)
j +b

(3)
q

))
=4, W

(
σ1

(
n2

∑
j=1

a
(3)
qj u

(2)
j +b

(3)
q

))
≤W

and

D
(

n2

∑
j=1

a
(3)
qj Diu

(2)
j

)
=4, W

(
n1

∑
j=1

a
(3)
qj Diu

(2)
j

)
≤max{2W ,4W}=4W ,

we conclude that Diu
(3)
q can be implemented by a ReLU-ReLU2 network and D

(
Diu

(3)
q

)
=

5, W
(
Diu

(3)
q

)
≤max{5W ,4}=5W .

We assume that Diu
(k)
q (q=1,2,··· ,nk) can be implemented by a ReLU-ReLU2 network

and D
(

Diu
(k)
q

)
= k+2, W

(
Diu

(3)
q

)
≤ (k+2)W . For the (k+1)−th layer,

Diu
(k+1)
q =Diσ2

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

)

=2σ1

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

)
·

nk

∑
j=1

a
(k+1)
qj Diu

(k)
j .

Since

D
(

σ1

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

))
= k+2,

W
(

σ1

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

))
≤W ,
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and

D
(

nk

∑
j=1

a
(k+1)
qj Diu

(k)
j

)
= k+2,

W
(

nk

∑
j=1

a
(k+1)
qj Diu

(k)
j

)
≤max{(k+2)W ,4W}=(k+2)W ,

we conclude that Diu
(k+1)
q can be implemented by a ReLU-ReLU2 network and

D(Diu
(k+1)
q

)
= k+3, W(

Diu
(k+1)
q

)≤max{(k+3)W ,4}=(k+3)W .

Hence we derive that Diu = Diu
D
1 can be implemented by a ReLU-ReLU2 network

and D(Diu) =D+2, W (Diu)≤ (D+2)W . Finally we obtain that D(‖∇u‖2
)
=D+3,

W
(
‖∇u‖2

)
≤d(D+2)W .

We are now in a position to bound the Rademacher complexity of N 2 and N 1,2. To
obtain the estimation, we need to introduce covering number, VC-dimension, pseudo-
dimension and recall several properties of them.

Definition 3.2. Suppose that W⊂R
n. For any ǫ>0, let V⊂R

n be a ǫ -cover of W with respect
to the distance d∞, that is, for any w∈W, there exists a v∈V such that d∞(u,v)<ǫ, where d∞ is
defined by

d∞(u,v) :=‖u−v‖∞.

The covering number C (ǫ,W,d∞) is defined to be the minimum cardinality among all ǫ-cover of
W with respect to the distance d∞.

Definition 3.3. Suppose that N is a class of functions from Ω to R. Given n sample Zn =
(Z1,Z2,··· ,Zn)∈Ωn,N |Zn ⊂R

n is defined by

N |Zn ={(u(Z1),u(Z2),··· ,u(Zn)) : u∈N}.

The uniform covering number C∞(ǫ,N ,n) is defined by

C∞(ǫ,N ,n)= max
Zn∈Ωn

C (ǫ,N |Zn ,d∞).

Next we give a upper bound of R(N ) in terms of the covering number of N by using
the Dudley’s entropy formula [13].

Lemma 3.7 (Massart’s finite class lemma [7]). For any finite set V ∈R
n with diameter D=

∑v∈V‖v‖2, then

EΣn

[
sup
v∈V

1

n

∣∣∣∣∣∑
i

σivi

∣∣∣∣∣

]
≤ D

n

√
2log(2|V|).

We give an upper bound of R(N ) in terms of the covering number by using the
Dudley’s entropy formula [13].
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Lemma 3.8 (Dudley’s entropy formula [13]). Assume 0∈N and the diameter of N is less
than B, i.e., ‖u‖L∞(Ω)≤B,∀u∈N . Then any n∈N≥1,

Rn(N )≤ inf
0<δ<B

(
4δ+

12√
n

∫ B

δ

√
log(2C (ε,N ,n))dε

)
.

Proof. By definition

Rn(N )=Rn(N |Zn)=EZn

[
EΣ

[
sup
u∈N

1

n

∣∣∣∣∣∑
i

σiu(Zi)

∣∣∣∣∣

∣∣∣∣∣Zn

]]
.

Thus, it suffice to show

EΣ

[
sup
u∈N

1

n

∣∣∣∣∣∑
i

σiu(Zi)

∣∣∣∣∣

]
≤ inf

0<δ<B

(
4δ+

12√
n

∫ B

δ

√
logC (ε,N 2,n)dε

)

by conditioning on Zn. Given an positive integer K, let εk = 2−k+1B, k= 1,··· ,K. Let Ck

be a cover of N |Zn ⊆R
n whose covering number is denoted as C(εk,N |Zn ,d∞). Then, by

definition, ∀u∈N , there ∃ ck ∈Ck such that

d∞(u|Zn ,ck)=max{|u(Zi)−ck
i |, i=1,··· ,n}≤ εk, k=1,··· ,K.

Moreover, we denote the best approximate element of u in Ck with respect to d∞ as ck(u).
Then,

EΣ

[
sup
u∈N

1

n

∣∣∣∣∣
n

∑
i=1

σiu(Zi)

∣∣∣∣∣

]

=EΣ

[
sup
u∈N

1

n

∣∣∣∣∣
n

∑
i=1

σi(u(Zi)−cK
i (u))+

K−1

∑
j=1

n

∑
i=1

σi(c
j
i(u)−c

j+1
i (u))+

n

∑
i=1

σic
1
i (u)

∣∣∣∣∣

]

≤EΣ

[
sup
u∈N

1

n

∣∣∣∣∣
n

∑
i=1

σi(u(Zi)−cK
i (u))

∣∣∣∣∣

]
+

K−1

∑
j=1

EΣ

[
sup
u∈N

1

n

∣∣∣∣∣
n

∑
i=1

σi(c
j
i(u)−c

j+1
i (u))

∣∣∣∣∣

]

+EΣ

[
sup
u∈N

1

n

∣∣∣∣∣
n

∑
i=1

σic
1
i (u)

∣∣∣∣∣

]
.

Since 0∈N , and the diameter of N is smaller than B, we can choose C1 = {0} such that
the third term in the above display vanishes. By Hölder’s inequality, we deduce that the
first term can be bounded by εK as follows.

EΣ

[
sup
u∈N

1

n

∣∣∣∣∣
n

∑
i=1

σi(u(Zi)−cK
i (u))

∣∣∣∣∣

]

≤EΣ

[
sup
u∈N

1

n

(
n

∑
i=1

|σi|
)(

n

∑
i=1

max
i=1,...,n

{∣∣∣u(Zi)−cK
i (u)

∣∣∣
})]

≤ εK.
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Let Vj={cj(u)−cj+1(u) : u∈N}. Then by definition, the number of elements in Vj and Cj

satisfying
|Vj|≤ |Cj||Cj+1|≤ |Cj+1|2.

And the diameter of Vj denoted as Dj can be bounded as

Dj =sup
v∈Vj

‖v‖2 ≤
√

nsup
u∈N

‖cj(u)−cj+1(u)‖∞

≤√
nsup

u∈N
‖cj(u)−u‖∞+‖u−cj+1(u)‖∞

≤
√

n(ε j+ε j+1)

≤3
√

nε j+1.

Then,

EΣ

[
sup
u∈N

1

n

∣∣∣
K−1

∑
j=1

n

∑
i=1

σi(c
j
i(u)−c

j+1
i (u))

∣∣∣
]
≤

K−1

∑
j=1

EΣ

[
sup
v∈Vj

1

n

∣∣∣
n

∑
i=1

σivj

∣∣∣
]

≤
K−1

∑
j=1

Dj

n

√
2log(2|Vj|)

≤
K−1

∑
j=1

6ε j+1√
n

√
log(2|Cj+1|),

where we use triangle inequality in the first inequality, and use Lemma 3.7 in the second
inequality. Putting all the above estimates together, we get

EΣ

[
sup
u∈N

1

n

∣∣∣∣∣∑
i

σiu(Zi)

∣∣∣∣∣

]
≤ εK+

K−1

∑
j=1

6ε j+1√
n

√
log(2|Cj+1|)

≤ εK+
K

∑
j=1

12(ε j−ε j+1)√
n

√
log(2C

(
ε j,N ,n

)
)

≤ εK+
12√

n

∫ B

εK+1

√
log(2C (ε,N ,n))dε

≤ inf
0<δ<B

(
4δ+

12√
n

∫ B

δ

√
log(2C (ε,N ,n))dε

)
,

where last inequality holds since for 0< δ<B, we can choose K to be the largest integer
such that εK+1>δ, at this time εK ≤4εK+2≤4δ.

Definition 3.4. Let N be a set of functions from X = Ω(∂Ω) to {0,1}. Suppose that S =
{x1,x2,··· ,xn}⊂X. We say that S is shattered by N if for any b∈{0,1}n , there exists a u∈N
satisfying

u(xi)=bi, i=1,2,··· ,n.
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Definition 3.5. The VC-dimension of N , denoted as VCdim(N ), is defined to be the maximum
cardinality among all sets shattered by N .

VC-dimension reflects the capability of a class of functions to perform binary clas-
sification of points. The larger VC-dimension is, the stronger the capability to perform
binary classification is. For more discussion of VC-dimension, readers are referred to [3].

For real-valued functions, we can generalize the concept of VC-dimension into pseudo-
dimension [3].

Definition 3.6. Let N be a set of functions from X to R. Suppose that S={x1,x2,··· ,xn}⊂ X.
We say that S is pseudo-shattered by N if there exists y1,y2,··· ,yn such that for any b∈{0,1}n ,
there exists a u∈N satisfying

sign(u(xi)−yi)=bi, i=1,2,··· ,n,

and we say that {yi}n
i=1 witnesses the shattering.

Definition 3.7. The pseudo-dimension of N , denoted as Pdim(N ), is defined to be the maximum
cardinality among all sets pseudo-shattered by N .

The following proposition showing a relationship between uniform covering number
and pseudo-dimension.

Lemma 3.9. Let N be a set of real functions from a domain X to the bounded interval [0,B]. Let
ε>0. Then

C(ε,N ,n)≤
Pdim(N )

∑
i=1

(
n
i

)(B
ε

)i

,

which is less than
(

enB
ε·Pdim(N )

)Pdim(N )
for n≥Pdim(N ).

Proof. See Theorem 12.2 in [3].

We now present the bound of pseudo-dimension for the N 2 and N 1,2.

Lemma 3.10. Let p1,··· ,pm be polynomials with n variables of degree at most d. If n≤m, then

|{(sign(p1(x)),··· ,sign(pm(x))) : x∈R
n}|≤2

(
2emd

n

)n

.

Proof. See Theorem 8.3 in [3].

Lemma 3.11. Let N be a set of functions that

(i) can be implemented by a neural network with depth no more than D and width no more
than W , and

(ii) the activation function in each unit be the ReLU or the ReLU2.
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Then
Pdim(N )=O(D2W2(D+logW)).

Proof. The argument is follows from the proof of Theorem 6 in [5]. The result stated here
is somewhat stronger than Theorem 6 in [5] since VCdim(sign(N ))≤Pdim(N ).

We consider a new set of functions:

Ñ ={ũ(x,y)=sign(u(x)−y) : u∈H}.

It is clear that Pdim(N )≤ VCdim(Ñ ). We now bound the VC-dimension of Ñ . De-
noting M as the total number of parameters(weights and biases) in the neural network
implementing functions in N , in our case we want to derive the uniform bound for

K{xi},{yi}(m) := |{(sign( f (x1,a)−y1),··· ,sign(u(xm,a)−ym)) : a∈R
M}|

over all {xi}m
i=1 ⊂ X and {yi}m

i=1 ⊂ R. Actually the maximum of K{xi},{yi}(m) over all
{xi}m

i=1 ⊂ X and {yi}m
i=1 ⊂ R is the growth function GÑ (m). In order to apply Lemma

3.10, we partition the parameter space R
M into several subsets to ensure that in each

subset u(xi,a)−yi is a polynomial with respect to a without any breakpoints. In fact, our
partition is exactly the same as the partition in [5]. Denote the partition as {P1,P2,··· ,PN}
with some integer N satisfying

N≤
D−1

∏
i=1

2

(
2emki(1+(i−1)2i−1)

Mi

)Mi

, (3.10)

where ki and Mi denotes the number of units at the ith layer and the total number of
parameters at the inputs to units in all the layers up to layer i of the neural network
implementing functions in N , respectively. See [5] for the construction of the partition.
Obviously we have

K{xi},{yi}(m)≤
N

∑
i=1

|{(sign(u(x1,a)−y1),··· ,sign(u(xm,a)−ym)) : a∈Pi}|. (3.11)

Note that u(xi,a)−yi is a polynomial with respect to a with degree the same as the degree
of u(xi,a), which is equal to 1+(D−1)2D−1 as shown in [5]. Hence by Lemma 3.10, we
have

|{(sign(u(x1,a)−y1),··· ,sign(u(xm,a)−ym)) : a∈Pi}|

≤2

(
2em(1+(D−1)2D−1)

MD

)MD

. (3.12)

Combining (3.10),(3.11),(3.12) yields

K{xi},{yi}(m)≤
D
∏
i=1

2

(
2emki(1+(i−1)2i−1)

Mi

)Mi

.
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We then have

GÑ (m)≤
D
∏
i=1

2

(
2emki(1+(i−1)2i−1)

Mi

)Mi

,

since the maximum of K{xi},{yi}(m) over all {xi}m
i=1 ⊂ X and {yi}m

i=1 ⊂ R is the growth
function GÑ (m). Some algebras as that of the proof of Theorem 6 in [5], we obtain

Pdim(N )≤O(D2W2logU+D3W2
)
=O(D2W2(D+logW)

)
,

where U refers to the number of units of the neural network implementing functions in
N .

With the help of above preparations, the statistical error can easily be bounded by a
tedious calculation.

Theorem 3.3. Let D and W be the depth and width of the network respectively. Set the size of
training samples N=M=n, then

EX ,YEsta≤Cc3d(D+3)(D+2)W
√
D+3+log(d(D+2)W)

(
logn

n

)1/2

+Cc3dDW
√
D+logW

(
logn

n

)1/2

λ.

Proof. In order to apply Lemma 3.8, we need to handle the term

1√
n

∫ B

δ

√
log(2C(ǫ,N ,n))dǫ

≤ B√
n
+

1√
n

∫ B

δ

√

log

(
enB

ǫ·Pdim(N )

)Pdim(N )

dǫ

≤ B√
n
+

(
Pdim(N )

n

)1/2∫ B

δ

√
log

(
enB

ǫ·Pdim(N )

)
dǫ,

where in the first inequality we use Lemma 3.9. Now we calculate the integral. Set

t=

√
log

(
enB

ǫ·Pdim(N )

)
,
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then ǫ= enB
Pdim(N )

·e−t2
. Denote t1=

√
log
(

enB
B·Pdim(N )

)
, t2=

√
log
(

enB
δ·Pdim(N )

)
. And

∫ B

δ

√
log

(
enB

ǫ·Pdim(N )

)
dǫ=

2enB
Pdim(N )

∫ t2

t1

t2e−t2
dt

=
2enB

Pdim(N )

∫ t2

t1

t

(
−e−t2

2

)′
dt

=
enB

Pdim(N )

[
t1e−t2

1−t2e−t2
2+
∫ t2

t1

e−t2
dt

]

≤ enB
Pdim(N )

[
t1e−t2

1−t2e−t2
2+(t2−t1)e

−t2
1

]

≤ enB
Pdim(N )

·t2e−t2
1 =B

√
log

(
enB

δ·Pdim(N )

)
.

Choosing δ=B
(Pdim(N )

n

)1/2 ≤B, by Lemma 3.8 and the above display, we get for both

N =N 2 and N =N 1,2 there holds

Rn(N )≤4δ+
12√

n

∫ B

δ

√
log(2C(ǫ,N ,n))dǫ

≤4δ+
12B√

n
+12B

(
Pdim(N )

n

)1/2
√

log

(
enB

δ·Pdim(N )

)

≤28

√
3

2
B
(

Pdim(N )

n

)1/2
√

log

(
en

Pdim(N )

)
. (3.13)

Then by Lemmas 3.3, 3.8, 3.5, 3.6 and Eq. (3.13), we have

EX ,YEsta=2 sup
u∈N 2

|L(u)−L̂(u)|

≤2Rn(N 1,2)+2(2c2
3+2c3)Rn(N 2)+2c2

3Rn(N 2)λ

≤56

√
3

2
B
(

Pdim(N 1,2)

n

)1/2
√

log

(
en

Pdim(N 1,2)

)

+56

√
3

2
(2c2

3+2c3)B
(

Pdim(N 2)

n

)1/2
√

log

(
en

Pdim(N 2)

)

+56

√
3

2
c2

3B
(

Pdim(N 2)

n

)1/2
√

log

(
en

Pdim(N 2)

)
λ.

Plugging the upper bound of Pdim derived in Lemma 3.9 into the above display and
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using the relationship of depth and width between N 2 and N 1,2, we get

EX ,YEsta≤Cc3d(D+3)(D+2)W
√
D+3+log(d(D+2)W)

(
logn

n

)1/2

+Cc3dDW
√
D+logW

(
logn

n

)1/2

λ. (3.14)

This completes the proof.

3.3 Error from the boundary penalty method

Although the Lemma 2.3 shows the convergence property of Robin problem (2.4) as λ→
∞

u∗
λ→u∗,

it says nothing about the convergence rate. In this section, we consider the error from
the boundary penalty method. Roughly speaking, we bound the distance between the
minimizer u∗ and u∗

λ with respect to the penalty parameter λ.

Theorem 3.4. Suppose u∗
λ is the minimizer of (2.5) and u∗ is the minimizer of (2.3). Then

‖u∗
λ−u∗‖H1(Ω)≤Cc3,dλ−1.

Proof. Following the idea which is proposed in [33] (proof of Proposition 2.3), we proceed
to prove this theorem. For v∈H1(Ω), we introduce

Rλ(v)=
1

2
a(u∗−v,u∗−v)+

λ

2

∫

∂Ω

(
− 1

λ

∂u∗

∂n
−v

)2

ds. (3.15)

Given ϕ∈H1(Ω) such that Tϕ=− ∂u∗
∂n , we set w= 1

λ ϕ+u∗. Due to u∗∈H1
0(Ω), it follows

that

Rλ(w)=
1

2λ2
a(ϕ,ϕ)+

λ

2

∫

∂Ω
(u∗)2ds=

1

2λ2
a(ϕ,ϕ)≤Cλ−2, (3.16)

where C is dependent only on B, w and Ω. Apparently, (3.15) can be written

Rλ(v)=
1

2
a(u∗,u∗)−a(u∗,v)+

1

2
a(v,v)+

1

2λ

∫

∂Ω

(
∂u∗

∂n

)2

ds+
∫

∂Ω

∂u∗

∂n
vds

+
λ

2

∫

∂Ω
v2ds

=
1

2
a(u∗,u∗)+

1

2
a(v,v)+

1

2λ

∫

∂Ω

(
∂u∗

∂n

)2

ds+
λ

2

∫

∂Ω
v2ds−

∫

Ω
f vdx

=
1

2
a(u∗,u∗)+

1

2λ

∫

∂Ω

(
∂u∗

∂n

)2

ds+Lλ(v),
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where the second equality comes from that

a(u∗,v)−
∫

∂Ω

∂u∗

∂n
vds=

∫

Ω
f vdx, ∀v∈H1(Ω). (3.17)

Since Rλ(v)=Lλ(v)+const, u∗
λ is also the minimizer of Rλ over H1(Ω). Recall (3.16), we

obtain the estimation of Rλ(u
∗
λ)

0≤Rλ(u
∗
λ)=

1

2
a(u∗−u∗

λ,u∗−u∗
λ)+

λ

2

∫

∂Ω

(
− 1

λ

∂u∗

∂n
−u∗

λ

)2

ds≤Rλ(w)≤Cλ−2.

Now that a(·,·) is coercive, we arrive at

‖u∗−u∗
λ‖H1(Ω)≤Cc3,dλ−1.

This completes the proof.

In [23], they proved that the error ‖u∗
λ−u∗‖H1(Ω) ≤O(λ−1/2), which is suboptimal

comparing with the above results derived here. In [35,36], they proved the O(λ−1) bound
under some unverifiable conditions.

3.4 Convergence rate

Note that for λ→∞ the approximation error Eapp and the statistical error Esta approach
∞ and for λ→ 0 the error from penalty blows up. Hence, there must be a trade off for
choosing proper λ.

Theorem 3.5. Let u∗ be the weak solution of (2.1) with bounded f ∈ L2(Ω), w∈ L∞(Ω). ûφ

is the minimizer of the discrete version of the associated Robin energy with parameter λ. Letting
n≥2 be the number of training samples on the domain and the boundary (i.e., N=M=n), there
is a ReLU2 network with depth and width as

D≤⌈log2 d⌉+3, W≤O

4d

⌈(
n

logn

) 1
2(d+2)

−4

⌉d

,

such that
EX ,Y

[
‖ûφ−u∗‖2

H1(Ω)

]
≤Cc1,c2,c3,dO

(
n− 1

d+2 (logn)
d+3
d+2

)

+Cc1,c2,c3,dO
(

n− 1
d+2 (logn)

d+3
d+2

)
λ

+Cc3,dλ−2.

Furthermore, for

λ∼n
1

3(d+2) (logn)
− d+3

3(d+2) ,

it holds that
EX ,Y

[
‖ûφ−u∗‖2

H1(Ω)

]
≤Cc1,c2,c3,dO

(
n
− 2

3(d+2) logn
)

.
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Proof. Combining Theorem 3.1, Theorem 3.2 and Theorem 3.3, we obtain by taking ε2 =

Cc1,c2,c3

( logn
n

) 1
d+2

EX ,Y [‖ûφ−u∗
λ‖2

H1(Ω)]

≤ 2

c1∧1

[
Cc3d(D+3)(D+2)W

√
D+3+log(d(D+2)W)

(
logn

n

)1/2

+
c3+1

2
ε2

]

+
2

c1∧1

[
Cc3dDW

√
D+logW

(
logn

n

)1/2

+
Cd

2
ε2

]
λ

≤ 2

c1∧1

[
Cc34d2(⌈logd⌉+6)(⌈logd⌉+5)

⌈
Cc2

ε
−4

⌉d

·
√√√√⌈logd⌉+6+log

(
4d2(⌈logd⌉+5)

⌈
Cc2

ε
−4

⌉d
)(

logn

n

)1/2

+
c3+1

2
ε2




+
2

c1∧1

[
Cc34d2(⌈logd⌉+3)

⌈
Cc2

ε
−4

⌉d

·
√√√√⌈logd⌉+3+log

(
4d

⌈
Cc2

ε
−4

⌉d
)(

logn

n

)1/2

+
Cd

2
ε2


λ

≤Cc1,c2,c3,dO
(

n− 1
d+2 (logn)

d+3
d+2

)
+Cc1,c2,c3,dO

(
n− 1

d+2 (logn)
d+3
d+2

)
λ.

Using Theorem 3.1 and Theorem 3.4, it holds that for all λ>0

EX ,Y

[
‖ûφ−u∗‖2

H1(Ω)

]
≤Cc1,c2,c3,dO

(
n− 1

d+2 (logn)
d+3
d+2

)

+Cc1,c2,c3,dO
(

n− 1
d+2 (logn)

d+3
d+2

)
λ

+Cc3,dλ−2. (3.18)

We have derive the error estimate for fixed λ, and now we are in a position to find a
proper λ and get the convergence rate. Since (3.18) holds for any λ > 0, we take the
infimum of λ:

EX ,Y

[
‖ûφ−u∗‖2

H1(Ω)

]
≤ inf

λ>0

{
Cc1,c2,c3,dO

(
n− 1

d+2 (logn)
d+3
d+2

)

+Cc1,c2,c3,dO
(

n− 1
d+2 (logn)

d+3
d+2

)
λ

+Cc3,dλ−2
}

.

By taking

λ∼n
1

3(d+2) (logn)
− d+3

3(d+2) ,
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we can obtain
EX ,Y

[
‖ûφ−u∗‖2

H1(Ω)

]
≤Cc1,c2,c3,dO

(
n
− 2

3(d+2) logn
)

.

This completes the proof.

4 Conclusions and extensions

This paper provided an analysis of convergence rate for deep Ritz methods for Laplace
equations with Dirichlet boundary condition. More precisely, we provide a rule to choose
the depth and width of networks and to choose a proper penalty parameter to achieve the
desired convergence rate in terms of number of training samples. The estimation on the
approximation error of deep ReLU2 network is established in H1. The statistical error can
be derived technically by the Rademacher complexity of the non-Lipschitz composition
of gradient norm and ReLU2 network. We also give the error estimation to the boundary
penalty method.

There are several interesting further research directions. First, the current analysis can
be extended to general second order elliptic equations with other boundary conditions.
Second, the approximation and statistical error bounds deriving here can be used for
studying the nonasymptotic convergence rate for residual based method, such as PINNs.
Finally, the similar result may be applicable to deep Ritz methods for optimal control
problems and inverse problems.
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Appendix

A.1 Proof of Lemma 2.2

We claim that aλ is coercive on H1(Ω). In fact,

aλ(u,u)= a(u,u)+λ
∫

∂Ω
u2 ds≥C‖u‖2

H1(Ω), ∀u∈H1(Ω),

where C is constant from Poincaré inequality [17]. Thus, there exists a unique weak
solution u∗

λ∈H1(Ω) such that

aλ(u
∗
λ,v)= f (v), ∀v∈H1(Ω).
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We can check u∗
λ is the unique minimizer of Lλ(u) by standard technique.

We will study the regularity for weak solutions of (2.4). For the following discussion,
we first introduce several useful classic results of second order elliptic equations in [16,
17].

Lemma A.1. Assume w ∈ L∞(Ω), f ∈ L2(Ω), g ∈ H3/2(∂Ω) and ∂Ω is sufficiently smooth.
Suppose that u∈H1(Ω) is a weak solution of the elliptic boundary-value problem

{
−∆u+wu= f , in Ω,

u= g, on ∂Ω.

Then u∈H2(Ω) and there exists a positive constant C, depending only on Ω and w, such that

‖u‖H2(Ω)≤C
(
‖ f‖L2(Ω)+‖g‖H3/2(∂Ω)

)
.

Proof. See [16].

Lemma A.2. Assume w ∈ L∞(Ω), f ∈ L2(Ω), g ∈ H1/2(∂Ω) and ∂Ω is sufficiently smooth.
Suppose that u∈H1(Ω) is a weak solution of the elliptic boundary-value problem





−∆u+wu= f , in Ω,

∂u

∂n
= g, on ∂Ω.

Then u∈H2(Ω) and there exists a positive constant C, depending only on Ω and w, such that

‖u‖H2(Ω)≤C
(
‖ f‖L2(Ω)+‖g‖H1/2(∂Ω)

)
.

Proof. See [17].

Lemma A.3. Assume w ∈ L∞(Ω), g ∈ H1/2(∂Ω), ∂Ω is sufficiently smooth and λ > 0. Let
u∈H1(Ω) be the weak solution of the following Robin problem





−∆u+wu=0, in Ω,

1

λ

∂u

∂n
+u= g, on ∂Ω.

(A.1)

Then u∈H2(Ω) and there exists a positive constant C independent of λ such that

‖u‖H2(Ω)≤Cλ‖g‖H1/2(∂Ω).

Proof. Following the idea which is proposed in [10] in a slightly different context. We first
estimate the trace Tu= u|∂Ω. We define the Dirichlet-to-Neumann map

T̃ : u|∂Ω 7→ ∂u

∂n

∣∣∣∣
∂Ω

,
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where u satisfies −∆u+wu=0 in Ω, then

Tu=

(
1

λ
T̃+ I

)−1

g.

Now we are going to show that 1
λ T̃+ I is a positive definite operator in L2(∂Ω). We notice

that the variational formulation of (A.1) can be read as follow:

∫

Ω
∇u·∇vdx+

∫

Ω
wuvdx+λ

∫

∂Ω
uvds=λ

∫

∂Ω
gvds, ∀v∈H1(Ω).

Taking v=u, then we have

‖Tu‖2
L2(∂Ω)≤

〈(
1

λ
T̃+ I

)
Tu,Tu

〉
.

This means that λ−1T̃+ I is a positive definite operator in L2(∂Ω), and further, (λ−1T̃+
I)−1 is bounded. We have the estimate

‖Tu‖H1/2(∂Ω)≤C‖g‖H1/2(∂Ω). (A.2)

We rewrite the Robin problem (A.1) as follows





−∆u+wu=0, in Ω,

∂u

∂n
+u=λ

(
g−
(

1−λ−1
)

u
)

, on ∂Ω.

By Lemma A.2 we have

‖u‖H2(Ω)≤Cλ
∥∥∥g−

(
1−λ−1

)
Tu
∥∥∥

H1/2(∂Ω)
≤Cλ

(
‖g‖H1/2(∂Ω)+‖Tu‖H1/2(∂Ω)

)
. (A.3)

Combining (A.2) and (A.3), we obtain the desired estimation.

With the help of above lemmas, we now turn to proof the regularity properties of the
weak solution.

Theorem A.1. Assume w∈ L∞(Ω), f ∈ L2(Ω). Suppose that u∈H1(Ω) is a weak solution of
the boundary-value problem (2.4). If ∂Ω is sufficiently smooth, then u∈H2(Ω), and we have the
estimate

‖u‖H2(Ω)≤C‖ f‖L2(Ω),

where the constant C depending only on Ω and w.
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Proof. We decompose (2.4) into two equations

{
−∆u0+wu0= f , in Ω,

u0=0, on ∂Ω,
(A.4)





−∆u1+wu1=0, in Ω,

1

λ

∂u1

∂n
+u1=−∂u0

∂n
, on ∂Ω,

(A.5)

and obtain the solution of (2.4)

u=u0+
1

λ
u1.

Applying Lemma A.1 to (A.4), we have

‖u0‖H2(Ω)≤C‖ f‖L2(Ω), (A.6)

where C depends on Ω and w. Using Lemma A.3, it is easy to obtain

‖u1‖H2(Ω)≤Cλ

∥∥∥∥
∂u0

∂n

∥∥∥∥
H1/2(∂Ω)

≤Cλ‖u0‖H2(Ω), (A.7)

where the last inequality follows from the trace theorem. Combining (A.6) and (A.7), the
desired estimation can be derived by triangle inequality.
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