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Abstract. Using deep neural networks to solve PDEs has attracted a lot of attentions
recently. However, why the deep learning method works is falling far behind its em-
pirical success. In this paper, we provide a rigorous numerical analysis on deep Ritz
method (DRM) [47] for second order elliptic equations with Neumann boundary con-
ditions. We establish the first nonasymptotic convergence rate in H1 norm for DRM

using deep networks with ReLU2 activation functions. In addition to providing a
theoretical justification of DRM, our study also shed light on how to set the hyper-
parameter of depth and width to achieve the desired convergence rate in terms of
number of training samples. Technically, we derive bound on the approximation error

of deep ReLU2 network in C1 norm and bound on the Rademacher complexity of the

non-Lipschitz composition of gradient norm and ReLU2 network, both of which are of
independent interest.
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1 Introduction

Partial differential equations (PDEs) have broad applications in physics, chemistry, bi-
ology, geology and engineering. A great deal of efforts have been devoted to studying
numerical methods for solving PDEs [5, 7, 16, 22, 43]. However, it is still a challenging
task to develop numerical scheme for solving PDEs in high-dimension. Due to the suc-
cess of deep learning for high-dimensional data analysis in computer vision and natural
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language processing, people have been paying more attention to using (deep) neural net-
work to solve PDEs in high dimension with may be complex domain, an idea that goes
back to 1990’s [19, 21]. In the last few years, there are growing literatures on neural net-
work based numerical methods for PDEs. These works can be roughly classified into two
categories.

In the first category, deep neural networks are used to improve classical methods.
[10] designs a neural network to estimate artificial viscosity in discontinuous Galerkin
schemes, see also [6]. [32] trains a neural network serving as a troubled-cell indicator in
high-resolution schemes for conservation laws. [41] proposes a universal discontinuity
detector using convolution neural network and applies it in conjunction of solving non-
linear conservation. [46] uses reinforcement learning to find new and potentially better
data-driven solvers for conservation laws.

In the second category, deep neural networks are utilized to approximate the solution
of the PDEs directly. Being benefit from the excellent approximation power of deep neu-
ral networks and SGD training, these methods have been successfully applied to solve
PDEs in high-dimension. [3, 9] convert nonlinear parabolic PDEs into backward stochas-
tic differential equations and solve them by deep neural networks, which can deal with
high-dimensional problems. Methods based on the strong form of PDEs [31, 39] are also
proposed. In [31], physics-informed neural networks (PINNs) use the squared residu-
als on the domain as the loss function and treat boundary conditions as penalty term.
There are several extensions of PINNs for different types of PDEs, including fractional
PINNs [30], nonlocal PINNs [29], conservative PINNs [18], eXtended PINNs [17], among
others. A similar method presented in [25] proposes a residual-based adaptive refine-
ment method to improve the training efficiency.

In contrast to minimizing squared residuals of strong form, a natural alternative ap-
proach to derive loss functions are based on the variational form of PDEs [47, 50]. In-
spired by Ritz method, [47] proposes deep Ritz method (DRM) to solve variational prob-
lems arising from PDEs. The idea of Galerkin method has also been used in [50], where,
they propose a deep Galerkin method (DGM) via reformulating the problem of finding
the weak solution of PDEs into an operator norm minimization problem induced by the
weak formulation.

1.1 Related works and contributions

Although there are great empirical achievements in recent years as mentioned above, a
challenging and interesting question is that can we give rigorous analysis to guarantee
their performances as people has done in the classical counterpart such as finite element
method (FEM) [7] and finite difference method [22] ? Several recent efforts have been
devoted to making processes along this line. [26] consider the optimization and general-
ization error of second-order linear PDEs with two-layer neural networks in the scenario
of over-parametrization. [27, 36, 37] study the convergence of PINNs with deep neural
networks. When we were about to finish our draft, we aware that [24] give an error anal-
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ysis that focuses on analyzing one hidden layer shallow networks with ReLU-Cosine
activation functions to solve elliptic PDEs whose solutions are restricted to spectral Bar-
ron space, see also [48] for handling general equations with solutions living in spectral
Barron space via two layer ReLUk networks. Two important questions have not been

addressed in the above mentioned related study are those: (1) What is the influence

of the topological structure of the networks, say the depth and width, in the quantita-

tive error analysis? (2) How to determine these hyper-parameters to achieve a desired

convergence rate? In this paper, we give a firm answers on these questions by studying
convergence rate of the deep Ritz method to solve second order elliptic equations with
Neumann boundary conditions by using ReLU2 networks with arbitrary depth. As far as
we know, we establish the first nonasymptotic bound on DRM. The main contributions
of this paper are summarized as follows.

• We derive a bound on the approximation error of deep ReLU2 network in C1 norm,
which is of independent interest, i.e., we prove that for any u∗∈C2(Ω̄), there exist a

ReLU2 network ūφ̄ with depth D≤⌈log2d⌉+2, width W=Cd,‖u∗‖
C2(Ω̄)

(
1
ǫ

)d
such that

‖u∗−ūφ̄‖C1(Ω̄)≤ǫ.

• We establish a bound on the statistical error in DRM with the tools of Pseudo di-
mension, especially we give an bound on

EZi ,σi,i=1,···,n

[
sup

uφ∈N 2

1

n

∣∣∣∑
i

σi‖∇uφ(Zi)‖2
∣∣∣
]

,

i.e., the Rademacher complexity of the non-Lipschitz composition of gradient norm
and ReLU2 network, via calculating the Pseudo dimension of networks with both
ReLU and ReLU2 activation functions. We believe that the technique we used here
is helpful for bounding the statistical errors for other deep PDEs solvers where the
Rademacher complexity of non-Lipschitz composition is hard to handle.

• Based on the above to error bounds we establish the first nonasymptotic conver-
gence rate of deep Ritz method. We prove that if we set the depth and width in
ReLU2 networks to be

D=⌈log2d⌉+2, W=Cd,‖u∗‖C2(Ω̄)
n

d
d+2+ν ,

the H1 norm error of DRM in expectation is

O(n−1/(2d+4+ν)),

where n is the number of training samples on both the domain and the boundary,
ν is a positive number that can be an arbitrarily small. Our theory shed lights on
choosing the topological structure of the employed networks to achieve the desired
convergence rate in terms of number of training samples.
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• By comparing the known results in nonparametric regression, where the optimal
convergence rate in H1 norm for estimating functions in H2 with n paired samples

is O(n− 1
4+d ) [40], we conjecture that the optimal convergence rate of DRM in H1

norm is also O(n−1/(d+4)).

The rest of the paper are organized as follows. In Section 2, we give some preliminar-
ies. In Section 3, we present the detail analysis on the convergence rate of DRM. We give
conclusion and short discussion in Section 4.

2 Preliminaries

Consider the following elliptic equation with Neumann boundary conditions





−△u+wu= f , in Ω,

∂u

∂n
= g, on ∂Ω,

(2.1)

where Ω is a bounded open subset of R
d, d> 1, f (x)∈ L2(Ω), w(x)∈ L∞(Ω) satisfying

w(x)≥ c1 > 0 a.e., and g(s)∈ L2(∂Ω). Without loss of generality we assume Ω=(0,1)d.
Define

L(u)= 1

2
|u|2H1(Ω)+

1

2
‖u‖2

L2(Ω;w)−〈u, f 〉L2(Ω)−〈Tu,g〉L2(∂Ω), (2.2)

where T is the trace operator.

Lemma 2.1. The unique weak solution u∗∈H1(Ω) of (2.1) is the unique minimizer of L(u) over
H1(Ω). Moreover, u∗∈H2(Ω).

Proof. Well known results, see for example [13].

A function f : R
d→R

NL implemented by a neural network is defined by

f0(x)=x,

fℓ(x)=̺ℓ (Aℓfℓ−1+bℓ) for ℓ=1,··· ,L−1,

f= fL(x) :=ALfL−1+bL,

where Aℓ ∈ R
Nℓ×Nℓ−1, bℓ ∈ R

Nℓ and the activation function ̺ℓ is understood to act
component-wise (note that here we allow different activation functions in different lay-
ers). L is called the depth of the network and max{Nℓ, ℓ=0,··· ,L} is called the width of
the network. We will use L and W to denote the depth and width of neural networks
f, respectively. ∑

L
ℓ=1 Nℓ is called number of unites of f and φ = {Aℓ,bℓ}ℓ are called the

parameters. For simplicity we also use fφ to refer to the network. We use N 2
D,W ,B to de-

note the set of neural networks with depthD, width W , output of the function values and
their square norm of gradients bounded by B, activation function ReLU2(x)=max{0,x2}.
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Denote N 1,2
D,W ,B as the set of neural networks with depth D, width W , output bounded

by B, activation functions ReLU(x)=max{0,x} and ReLU2(x)=max{0,x2}.

Obviously,

L(u)=|Ω|EX∼U(Ω)[‖∇u(X)‖2
2/2+w(X)u2(X)/2−u(X) f (X)]

−|∂Ω|EY∼U(∂Ω)[Tu(Y)g(Y)],

where U(Ω),U(∂Ω) are the uniform distributions on Ω and ∂Ω, respectively. The main
idea of deep Ritz method (DRM) [47] is employing a uφ ∈N 2 :=N 2

D,W ,B to approximate
the minimizer u∗ of L, i.e., finding uφ such that L(uφ) closes to L(u∗). To this end, by
Lemma 2.1, one may consider the following empirical loss minimization problem

ûφ∈ min
uφ∈N 2

L̂(uφ), (2.3)

where

L̂(uφ)=
|Ω|
N

N

∑
i=1

[
‖∇uφ(Xi)‖2

2

2
+

w(Xi)u
2
φ(Xi)

2
−uφ(Xi) f (Xi)

]

− ∂Ω

M

M

∑
j=1

[uφ(Yj)g(Yj)] (2.4)

is a discrete version of the functional L(uφ) with {Xi}N
i=1 being identically and indepen-

dently distributed (i.i.d.) according to U(Ω), {Yj}M
j=1 being identically and independently

drawn from U(∂Ω). Then, we call a (random) solver A, say SGD, to minimize (2.3) and
denote the output of A, say uφA ∈N 2, as the final solution.

3 Error analysis

In this section we prove the convergence rate analysis for DRM with deep ReLU2 net-
works. The following Lemma play an important role by decoupling the total errors into
three types of errors.

Lemma 3.1.

‖uφA−u∗‖2
H1(Ω)

≤ 2

c1∧1

[ ‖w‖L∞(Ω)∨1

2
· inf
ū∈N 2

‖ū−u∗‖2
H1(Ω)

︸ ︷︷ ︸
Eapp

+2 sup
u∈N 2

|L(u)−L̂(u)|
︸ ︷︷ ︸

Esta

+L̂(uφA)−L̂(ûφ)︸ ︷︷ ︸
Eopt

]
.
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Proof. For any ū∈N 2, we have

L
(
uφA

)
−L(u∗)

=L
(
uφA

)
−L̂

(
uφA

)
+L̂

(
uφA

)
−L̂

(
ûφ

)
+L̂

(
ûφ

)
−L̂(ū)

+L̂(ū)−L(ū)+L(ū)−L(u∗)

≤ [L(ū)−L(u∗)]+2 sup
u∈N 2

∣∣∣L(u)−L̂(u)
∣∣∣+
[
L̂
(
uφA

)
−L̂

(
ûφ

)]
,

where the last step is due to the fact that L̂(ûφ

)−L̂(ū)≤0. Since ū can be any element in
N 2, we take the infimum of ū on both side of the above display,

L(uφA
)−L(u∗)≤ inf

ū∈N 2
[L(ū)−L(u∗)]+2 sup

u∈N 2

∣∣∣L(u)−L̂(u)
∣∣∣

+
[
L̂
(
uφA

)
−L̂

(
ûφ

)]
. (3.1)

Now for any u∈N 2, set v=u−u∗, then

L(u)=L(u∗+v)

=
1

2
(∇(u∗+v),∇(u∗+v))L2(Ω)+

1

2
(u∗+v,u∗+v)L2(Ω;w)

−〈u∗+v, f 〉L2(Ω)−〈Tu∗+Tv,g〉L2(∂Ω)

=
1

2
(∇u∗,∇u∗)L2(Ω)+

1

2
(u∗,u∗)L2(Ω;w)−〈u∗, f 〉L2(Ω)−〈Tu∗,g〉L2(∂Ω)

+
1

2
(∇v,∇v)L2(Ω)+

1

2
(v,v)L2(Ω;w)

+
[
(∇u∗,∇v)L2(Ω)+(u∗,v)L2(Ω;w)−〈v, f 〉L2(Ω)−〈Tv,g〉L2(∂Ω)

]

=L(u∗)+
1

2
(∇v,∇v)L2(Ω)+

1

2
(v,v)L2(Ω;w),

where the last equality is due to the fact that u∗ is the weak solution of Eq. (2.1). Hence

c1∧1

2
‖v‖2

H1(Ω)≤L(u)−L(u∗)=
1

2
(∇v,∇v)L2(Ω)+

1

2
(v,v)L2(Ω;w)

≤ ‖w‖L∞(Ω)∨1

2
‖v‖2

H1(Ω),

that is,

c1∧1

2
‖u−u∗‖2

H1(Ω)≤L(u)−L(u∗)≤
‖w‖L∞(Ω)∨1

2
‖u−u∗‖2

H1(Ω). (3.2)
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Combining (3.1) and (3.2) yields

‖uφA−u∗‖2
H1(Ω)

≤ 2

c1∧1

[‖w‖L∞(Ω)∨1

2
· inf
ū∈N 2

‖ū−u∗‖2
H1(Ω)

+2 sup
u∈N 2

∣∣∣L(u)−L̂(u)
∣∣∣+
[
L̂
(
uφA

)
−L̂

(
ûφ

)]]
.

This completes the proof.

The approximation error Eapp describes the expressive power of the ReLU2 networks
N 2 in H1 norm, which corresponds to the approximation error in FEM known as the
Céa’s lemma [7]. The statistical error Esta is caused by the Monte Carlo discretization of

L(·) defined in (2.2) with L̂(·) in (2.4). While, the optimization error Eopt indicates the
perforce of the solver A we utilized. In contrast, this error is corresponding to the error
of solving the linear systems in FEM. In this paper we focus on the first two errors, i.e,
considering the scenario of perfect training with Eopt=0.

4 Approximation error

The current literature on network approximation theory are mainly focus on the Lp,p∈
[1,+∞] norm for deep networks [23, 28, 33, 35, 38, 42, 49]. The approximation error of
ReLU network in Sobolev norm are considered in [12, 15]. In this section we derive an
upper bound on the approximation error ReLU2 networks N 2 in H1 norm, which is of
independent interest.

4.1 Approximation by B-splines

In this section we derive the approximation theorem of B-splines in Sobolev spaces based
on average Taylor expansion and quasi-interpolation, from which we upper bound the
approximation error of deep ReLU2 network in the next subsection.

We denote by πℓ the uniform partition of [0,1]:

πℓ : F t
(ℓ)
0 =0< t

(ℓ)
1 < ···< t

(ℓ)
ℓ−1< t

(ℓ)
ℓ

=1

with t
(ℓ)
i = i/ℓ (0≤ i≤ ℓ). For k∈N+, we consider an extended partition π̂ℓ:

π̂ℓ : t
(ℓ)
−k+1= ···= t

(ℓ)
0 =0< t

(ℓ)
1 < ···< t

(ℓ)
ℓ−1< t

(ℓ)
ℓ

= ···= t
(ℓ)
ℓ+k−1=1

with t
(ℓ)
i = i/ℓ (0≤ i≤ℓ). Then the univariate B-spline of order k with respect to partition

π̂ℓ is defined by

N
(k)
ℓ,i (x)=(−1)k

(
t
(ℓ)
i+k−t

(ℓ)
i

)
·
[

t
(ℓ)
i ,··· ,t(ℓ)i+k

]
(x−t)k−1

+ , x∈ [0,1], i∈ I, (4.1)
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where
I={−k+1,−k+2,··· ,ℓ−1}.

By the definition and properties of divided difference
[
t
(ℓ)
i ,··· ,t(ℓ)i+k

]
(see, for example, [34])

and some calculations, B-splines can also be equivalently written as:

N
(k)
ℓ,i (x)=





ℓk−1

(k−1)!

k

∑
j=0

(−1)j

(
k
j

)(
x− i+ j

ℓ

)k−1

+

, 0≤ i≤ ℓ−k+1,

k−1

∑
j=0

aij

(
x− j

ℓ

)k−1

+

+
k−2

∑
n=1

binxn+bi0, −k+1≤ i<0,

ℓ

∑
j=ℓ−k+1

cij

(
x− j

ℓ

)k−1

+

, ℓ−k+1< i≤ ℓ−1,

(4.2)

where {aij},{bin},{cij} are some constants. We must mention that the values of (4.1) and
(4.2) at x = 1 is different for ℓ−k+1 < i ≤ ℓ−1. In fact, for ℓ−k+1 < i ≤ ℓ−1, (4.1) is
discontinuous at x=1 and (4.2) is its continuous modification. In the following when we

mention N
(k)
ℓ,i , we always refer to the continuous version (4.2).

The multivariate B-spline is defined by the product of univariate B-splines:

N
(k)
ℓ,i (x)=

d

∏
j=1

N
(k)
ℓ,ij

(
xj

)
, i∈ Id.

The readers are referred to [34] [8] for more discussion of B-splines.
Now we list some properties of B-splines, which are the basis of our approximation

result.

Proposition 4.1 (Theorem 4.9 and Corollary 4.10, [34]). (1) N
(k)
ℓ,i = 0 for x /∈ (ti,ti+k) and

N
(k)
ℓ,i >0 for x∈ (ti,ti+k).

(2) {N
(k)
ℓ,i }i∈I forms a basis of space { f ∈Ck−2([0,1]) : f is k−1 degree piecewise poly-

nomial with respect to partition π̂l}.

Proposition 4.2 (Theorem 4.22, [34]). For r∈N0,

∣∣∣DrN
(k)
ℓ,i

∣∣∣≤2r
ℓ

r .

For i∈ Id, define
Ωi={x : xj ∈ [tij

,tij+k], j=1,··· ,d}.

Proposition 4.3 (Theorem 12.5, [34]). There exists a set of linear functionals {λi} mapping
L1(Ω) to R such that

λi(N
(k)
ℓ,j )=δi,j,
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and

|λi( f )|≤ (2k+1)d9d(k−1)

(
k

ℓ

)−d/p

‖ f‖Lp(Ωi),

for any f ∈Lp(Ω) with p∈ [1,∞].

Now we define the quasi-interpolant of f by

Q f := ∑
i∈Id

λi( f )N
(k)
ℓ,i , (4.3)

and Q is called the interpolation operator.

Proposition 4.4. Let p be a multivariate polynomial with respect to x1,··· ,xd and be of
order k with respect to each variable, then

Qp= p.

Proof. By definition, there exists {cff}⊂R such that

p(x1,··· ,xd)=
(k−1,···,k−1)

∑
ff=(0,···,0)

cffxα1
1 ···xαd

d .

By Proposition 4.1(2), there exists {ei,j,αj
}⊂R such that

x
αj

j =∑
i∈I

ei,j,αj
N

(k)
ℓ,i (xj).

Hence

p(x1,··· ,xd)=
(k−1,···,k−1)

∑
ff=(0,···,0)

cff

(
d

∏
j=1

∑
i∈I

ei,j,αj
N

(k)
ℓ,i (xj)

)

=
(k−1,···,k−1)

∑
ff=(0,···,0)

cff

(
∑
i∈Id

ei,ffN
(k)
ℓ,i (x)

)

= ∑
i∈Id

(
(k−1,···,k−1)

∑
ff=(0,···,0)

cffei,ff

)
N

(k)
ℓ,i (x).

Then

Qp= ∑
i∈Id

(
(k−1,···,k−1)

∑
ff=(0,···,0)

cffei,ff

)
QN

(k)
ℓ,i =∑

i∈I

(
(k−1,···,k−1)

∑
ff=(0,···,0)

cffei,ff

)
∑
j∈I

λj(N
(k)
ℓ,i )N

(k)
ℓ,j

=∑
i∈I

(
(k−1,···,k−1)

∑
ff=(0,···,0)

cffei,ff

)
∑
j∈I

δi,jN
(k)
ℓ,j =∑

i∈I

(
(k−1,···,k−1)

∑
ff=(0,···,0)

cffei,ff

)
N

(k)
ℓ,i = p,

where in the third step we apply Proposition 4.3.
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For functions in Sobolev spaces, the normal Taylor polynomials may not exist. How-
ever, the averaged Taylor polynomials defined in the following for such a function always
exists. The readers are referred to [5] for more discussions.

Definition 4.1. Suppose f ∈Ws,p(Ω). B is the ball centered at x0 ∈Ω with radius ρ and
B ⊂⊂ Ω. The corresponding Taylor polynomial of order s+1 of f averaged over B is
defined as

Qs+1
B f (x)=

∫

B
Ts+1

y f (x)φ(y)dy,

where

Ts+1
y f (x)= ∑

|ff|<s+1

1

ff!
Dff f (y)(x−y)α,

and φ is a cut-off function supported in B.

In order to present Bramble-Hilbert lemma, which shows the error bound between
function in Sobolev spaces and its averaged Taylor polynomials, we need the concepts of
star-shaped region and chunkiness parameter.

Definition 4.2. Ω is star-shaped with respect to a ball B if, for all x ∈ Ω there holds
conv({x}∪B)⊂Ω.

Definition 4.3. Suppose Ω has diameter h and is star-shaped with respect to a ball B. Let
ρmax = sup{ρ : Ω is star-shaped with respect to a ball of radius ρ}. Then the chunkiness
parameter of Ω is defined by γ= h

ρmax
.

Proposition 4.5 (Bramble-Hilbert). Let B be a ball in Ω such that Ω is star-shaped with
respect to B and such that its radius ρ> 1

2 ρmax. Let Qs
B f be the Taylor polynomial of order

s of f averaged over B with f ∈Ws,p(Ω) and p≥1. Then

| f −Qs
B f |Wr,p(Ω)≤C(s,d,γ)hs−r| f |Ws,p(Ω), r=0,1,··· ,s,

where h=diam(Ω).

Proof. See [5].

Theorem 4.1. Let f ∈Ws,p(Ω) with p∈ [1,∞) and Q f be defined by (4.3) with k≥s, there holds

| f −Q f |Wr,p(Ω)≤C(k,s,r,p,d)

(
1

ℓ

)s−r

| f |Ws,p(Ω), r=0,1,··· ,s.

Proof. We only show the case p∈ [1,∞) and the case p=∞ can be shown similarly. Let
f ∈Ws,p(Ω) and r=(r1,··· ,rd) with |r|= r. We first deal with the local integral. Denoting

Ii,k :=
d

∏
j=1

{ij−k+1,ij−k+2,··· ,ij+k−1},
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and
Ω̃i :=

⋃

j∈Ii,k

Ωj.

By Proposition 4.5, there exists a ball Bi⊂ Ω̃i such that

∫

Ωi

|Dr( f −Ts
Bi

f )|pdx≤C(s,p,d)

(
3k

ℓ

)(s−r)p

| f |p
Ws,p(Ω̃i)

. (4.4)

Hence
∫

Ωi

|Dr( f −Q f )|pdx≤
∫

Ωi

(
|Dr( f −Ts

Bi
f )|+|Dr(Ts

Bi
f −Q f )|

)p
dx

≤2p−1
∫

Ωi

|Dr( f −Ts
Bi

f )|pdx+2p−1
∫

Ωi

|Dr(Ts
Bi

f −Q f )|pdx

≤C(s,p,d)(3kh)(s−r)p| f |p
Ws,p(Ω̃i)

+2p−1
∫

Ωi

|DrQ(Ts
Bi

f − f )|pdx, (4.5)

where in the final step we apply Proposition 4.4. Now we deal with the integral related
to operator Q. For x∈Ωi , we have

|DrQ(Ts
Bi

f − f )|=

∣∣∣∣∣∣∑j∈Id

λj(T
s
Bi

f − f )Dr N
(k)
l,j

∣∣∣∣∣∣
=

∣∣∣∣∣ ∑
j∈Ii,k

λj(T
s
Bi

f − f )Dr N
(k)
l,j

∣∣∣∣∣

=

∣∣∣∣∣ ∑
j∈Ii,k

λj(T
s
Bi

f − f )
d

∏
q=1

Drq N
(k)
l,jq

∣∣∣∣∣

≤2r
ℓ

r ∑
j∈Ii,k

|λj(T
s
Bi

f − f )|

≤2r(2k+1)d9d(k−1)k−d/p
ℓ

r+d/p ∑
j∈Ii,k

‖ f −Ts
Bi

f‖Lp(Ωj)

≤2r(2k+1)d9d(k−1)k−d/p
ℓ

r+d/p|Ii,k|‖ f −Ts
Bi

f‖
Lp(Ω̃i)

≤2r(4k2−1)d9d(k−1)k−d/p
ℓ

r+d/p‖ f −Ts
Bi

f‖
Lp(Ω̃i)

≤2r(4k2−1)d9d(k−1)k−d/p

(
1

ℓ

)s−r−d/p

(3k)s| f |
Ws,p(Ω̃i)

,

where in the second step we apply Proposition 4.1(1), in the fourth step we use Propo-
sition 4.2, in the fifth step we use Proposition 4.3 and in the last step we apply (4.4).
Hence

∫

Ωi

|DrQ(Ts
Bi

f − f )|pdx≤C(k,s,r,p,d)

(
1

ℓ

)(s−r)p−d

| f |p
Ws,p(Ω̃i)

|Ωi|

=C(k,s,r,p,d)

(
1

ℓ

)(s−r)p

| f |p
Ws,p(Ω̃i)

. (4.6)
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Combining (4.5) and (4.6) and summing all the subregions, we have the global estimate:

∫

Ω
|Dr( f −Q f )|pdx= ∑

i∈Id

∫

Ωi

|Dr( f −Q f )|pdx≤C(k,s,r,p,d)

(
1

ℓ

)(s−r)p

∑
i∈Id

| f |p
Ws,p(Ω̃i)

≤C(k,s,r,p,d)

(
1

ℓ

)(s−r)p

kd| f |p
Ws,p(Ω)

=C(k,s,r,p,d)

(
1

ℓ

)(s−r)p

| f |p
Ws,p(Ω)

.

Hence

| f −Q f |p
Wr,p(Ω)

= ∑
|r|=r

∫

Ω
|Dr( f −Q f )|pdx≤C(k,s,r,p,d)

(
1

ℓ

)(s−r)p

| f |p
Ws,p(Ω)

.

This completes the proof.

When f ∈Cr(Ω), from the case p=∞ in Theorem 4.1 we immediately obtain

Corollary 4.1. Let f ∈Cs(Ω) with s≥0 and Q f be defined by (4.3) with k≥ s, there holds

‖ f −Q f‖Cr(Ω)≤C(k,s,r,d)

(
1

ℓ

)s−r

‖ f‖Cs(Ω), r=0,1,··· ,s.

4.2 Approximation by neural network

Now we bound the approximation error of deep ReLU2 networks.

Theorem 4.2. Assume that u∗ ∈C2(Ω̄). For any ǫ> 0, there exists a ReLU2 network u with

depth ⌈log2d⌉+2 and width Cd,‖u∗‖C2(Ω̄)

(
1
ǫ

)d
such that

‖u∗−u‖C1(Ω̄)≤ǫ.

Proof. By Theorem 4.1 and Corollary 4.1, we know that there exists {ci}i∈Id ⊂R such that

∥∥∥∥∥u∗− ∑
i∈Id

ciN
(3)
ℓ,i

∥∥∥∥∥
C1(Ω̄)

≤C(d)‖u∗‖C2(Ω̄) ·
1

ℓ
. (4.7)

Now we show that {N
(3)
ℓ,i } can be implemented by N 2 without any error. Denote

σ(x)=

{
x2, x≥0,

0, else,
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as the activation function in ReLU2 network. By definition of N
(3)
l,i (x) in (4.2), it’s clear

that N
(3)
l,i (x) can be implemented by ReLU2 network without any error with depth 2 and

width 7. On the other hand ReLU2 network can also realize multiplication without any
error. In fact, for any x,y∈R,

xy=
1

4
[(x+y)2−(x−y)2]=

1

4
[σ(x+y)+σ(−x−y)−σ(x−y)−σ(y−x)].

Hence multivariate B-spline of order 3 can be implemented by ReLU2 network exactly
with depth ⌈log2 d⌉+2 and width 7d.

Hence by (4.7) we conclude that there exists a ReLU2 network u with depth ⌈log2 d⌉+
2 and width Cd,‖u∗‖

C2(Ω̄)

(
1
ǫ

)d
such that ‖u∗−u‖C1(Ω̄)≤ǫ.

5 Statistical error

In this section, we bound the statistical error

Esta=2 sup
u∈N 2

|L(u)−L̂(u)|.

Lemma 5.1.

sup
u∈N 2

|L(u)−L̂(u)|≤
4

∑
j=1

sup
u∈N 2

|Lj(u)−L̂j(u)|,

where

L1(u)= |Ω|EX∼U(Ω)[w(X)u2(X)/2], L̂1(u)=
|Ω|
N

N

∑
i=1

[
w(Xi)u

2(Xi)

2
],

L2(u)= |Ω|EX∼U(Ω)[u(X) f (X)], L̂2(u)=
|Ω|
N

N

∑
i=1

[u(Xi) f (Xi)],

L3(u)= |∂Ω|EY∼U(∂Ω)[Tu(Y)g(Y)], L̂3(u)=
∂Ω

M

M

∑
j=1

[u(Yj)g(Yj)],

L4(u)= |Ω|EX∼U(Ω)[‖∇u(X)‖2
2/2], L̂4(u)=

|Ω|
N

N

∑
i=1

[
‖∇u(Xi)‖2

2

2
].

Proof. This lemma holds by the direct consequence of triangle inequality.

By Lemma 5.1, we have to bound the maximum value of four random processes in-
dexed by u∈N 2. To this end, we recall tools in empirical process [20, 44]. Denote

B=max{‖ūφ̄‖L∞(Ω), ‖‖∇ūφ̄‖2
2‖L∞(Ω)}, (5.1)
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where ūφ̄ is the best approximation of u∗ in Theorem 4.2. Let f ,g,w be bounded, say by
some constant c3, i.e, we assume that

‖ f‖L∞(Ω)∨‖w‖L∞(Ω)∨‖g‖L∞(∂Ω)∨B≤ c3 <∞.

We use µ to denote U(Ω)(U(∂Ω)). Given n = N(M) i.i.d samples Zn = {Zi}n
i=1 from

µ, with Zi = Xi(Yi)∼ µ, we need the following Rademacher complexity to measure the
capacity of the given function class N restricted on n random samples Zn.

Definition 5.1. The Rademacher complexity of a set A⊆Rn is defined as

R(A)=EZn,Σn

[
sup
a∈A

1

n

∣∣∣∑
i

σiai

∣∣∣
]

,

where, Σn={σi}n
i=1 are n i.i.d Rademacher variables with P(σi=1)=P(σi=−1)= 1

2 . The
Rademacher complexity of function class N associate with random sample Zn is defined
as

R(N )=EZn ,Σn

[
sup
u∈N

1

n

∣∣∣∑
i

σiu(Zi)
∣∣∣
]

.

Lemma 5.2. Let Ψ1(x,y) = w(x)y2

2 : R
d×R, |y| ≤ c3, Ψ2(x,y) = f (x)y : R

d×R, |y| ≤ c3,

Ψ3(x,y) = g(x)y : R
d×R, |y| ≤ c3. Then Ψ1(x,y), Ψ2(x,y) and Ψ3(x,y) are c2

3, c3 and c3-
Lipschitz continuous on y for all x and Ψj(x,0)=0, j=1,2,3.

Proof. We give the proof for Ψ1 and omit the details for Ψ2,Ψ3 since they can be shown
similarly. For arbitrary y1,y2 with |yi|≤ c3, i=1,2,

|Ψ1(x,y1)−Ψ1(x,y2)|=
∣∣∣w(x)y2

1

2
−w(x)y2

2

2

∣∣∣

=
|w(x)(y1+y2)|

2
|y1−y2|≤ c2

3|y1(x)−y2|.

This completes the proof.

By Corollary 3.17 in [20] and Lemma 5.2, we have the following Lipschitz contraction
results on Rademacher complexity.

Lemma 5.3. Let N ={u(x) : ‖u‖L∞(Ω)≤ c3}. Define

Ψj◦N ={composition of Ψj and N : x→Ψj(x,u(x)) : u∈N}, j=1,2,3.

Then R(Ψ1◦N )≤ c2
3R(N ), R(Ψi◦N )≤ c3R(N ), i=2,3.

The following symmetrization result shows that the Rademacher complexity R(Ψj◦
N 2) gives upper bound on supu∈N 2 |Lj(u)−L̂j(u)|, j=1,2,3.
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Lemma 5.4. EZn [supu∈N 2 |Lj(u)−L̂j(u)|]≤2R(Ψj ◦N 2), j=1,2,3.

Proof. We give the proof for j = 1 and omit the proof for Ψ2 and Ψ3 since they can be
shown similarly. Let Z̃n ={Z̃i}n

i=1 be an i.i.d ghost sample from µ and Z̃n is independent
of Zn.

EZn

[
sup

u∈N 2

|L1(u)−L̂1(u)|
]

=
|Ω|
n

EZn

[
sup

u∈N 2

∣∣∣
n

∑
i=1

(
EZ̃n

[w(Z̃i)u
2(Z̃i)

2

]
−w(Zi)u

2(Zi)

2

)∣∣∣
]

≤ |Ω|
n

EZn ,Z̃n

[
sup

u∈N 2

∣∣∣
n

∑
i=1

(w(Z̃i)u
2(Z̃i)

2
−w(Zi)u

2(Zi)

2

)∣∣∣
]

=
|Ω|
n

EZn ,Z̃n,Σn

[
sup

u∈N 2

∣∣∣
n

∑
i=1

σi

(w(Z̃i)u
2(Z̃i)

2
−w(Zi)u

2(Zi)

2

)∣∣∣
]

≤ |Ω|
n

EZn ,Σ

[
sup

u∈N 2

∣∣∣
n

∑
i=1

w(Zi)u
2(Zi)

2

∣∣∣
]
+
|Ω|
n

EZ̃n ,Σ

[
sup

u∈N 2

∣∣∣
n

∑
i=1

w(Z̃i)u
2(Z̃i)

2

∣∣∣
]

=2|Ω|R(Ψ1◦N 2),

where the first inequality follows from the Jensen’s inequality, and the second equality

holds since both σi(
w(Z̃i)u

2(Z̃i)
2 − w(Zi)u

2(Zi)
2 ) and (w(Z̃i)u

2(Z̃i)
2 − w(Zi)u

2(Zi)
2 ) are governed by

the same law, and the last equality holds since the distribution of the two terms are the
same.

Next we give a upper bound of R(N 2) in terms of the covering number of N 2 by
using the Dudley’s entropy formula [11].

Definition 5.2. Suppose that W ⊂R
n. For any ǫ> 0, let V ⊂R

n be a ǫ-cover of W with
respect to the distance d∞, that is, for any w∈W, there exists a v∈V such that d∞(w,v)<ǫ,
where d∞ is defined by

d∞(u,v) :=‖u−v‖∞ .

The covering number C(ǫ,W,d∞) is defined to be the minimum cardinality among all
ǫ-cover of W with respect to the distance d∞.

Definition 5.3. Suppose that N is a class of functions from Ω to R. Given n sample
Zn =(Z1,Z2,··· ,Zn)∈Ωn, N |Zn ⊂R

n is defined by

N |Zn ={(u(Z1),u(Z2),··· ,u(Zn)) : u∈N}.

The uniform covering number C∞(ǫ,N ,n) is defined by

C∞(ǫ,N ,n)= max
Zn∈Ωn

C(ǫ,N |Zn ,d∞).
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We need the Massart’s finite class lemma [4] for preparation.

Lemma 5.5. For any finite set V∈R
n with diameter D=supv∈V‖v‖2, then

EΣn

[
sup
v∈V

1

n

∣∣∣∑
i

σivi

∣∣∣
]
≤ D

n

√
2log(2|V|) .

Lemma 5.6. Assume 0∈N and the diameter of N is less than B, i.e., ‖u‖L∞(Ω)≤B, ∀u∈N .
Then

R(N )≤ inf
0<δ<B

(
4δ+

12√
n

∫ B

δ

√
log(2C (ǫ,N ,n))dǫ

)
.

Proof. The proof follows from the chaining method [44]. By definition

R(N )=R(N |Zn)=EZn

[
EΣ

[
sup
u∈N

1

n

∣∣∣∑
i

σiu(Zi)
∣∣∣
∣∣Zn

]]
.

With the help of Lemma 5.5, it suffice to show

EΣ

[
sup
u∈N

1

n

∣∣∣∑
i

σiu(Zi)
∣∣∣
]
≤ inf

0<δ<B

(
4δ+

12√
n

∫ B

δ

√
2logC (ǫ,N 2,n)dǫ

)

by conditioning on Zn. Given an positive integer K, let ǫk = 2−k+1B, k= 1,··· ,K. Let Ck

be a cover of N |Zn ⊆R
n whose covering number is denoted as C(ǫk,N |Zn ,d∞). Then, by

definition, ∀u∈N , there ∃ ck ∈Ck such that

d∞(u|Zn ,ck)=max{|u(Zi)−ck
i |, i=1,··· ,n}≤ǫk, k=1,··· ,K.

Moreover, we denote the best approximate element of u in Ck with respect to d∞ as ck(u).
Then,

EΣ

[
sup
u∈N

1

n

∣∣∣
n

∑
i=1

σiu(Zi)
∣∣∣
]

=EΣ

[
sup
u∈N

1

n

∣∣∣
n

∑
i=1

σi(u(Zi)−cK
i (u))+

K−1

∑
j=1

n

∑
i=1

σi(c
j
i(u)−c

j+1
i (u))+

n

∑
i=1

σic
1
i (u)

∣∣∣
]

≤EΣ

[
sup
u∈N

1

n

∣∣∣
n

∑
i=1

σi(u(Zi)−cK
i (u))

∣∣∣
]
+

K−1

∑
j=1

EΣ

[
sup
u∈N

1

n

∣∣∣
n

∑
i=1

σi(c
j
i(u)−c

j+1
i (u))

∣∣∣
]

+EΣ

[
sup
u∈N

1

n

∣∣∣
n

∑
i=1

σic
1
i (u)

∣∣∣
]

.

Since 0∈N , and the diameter of N is smaller than B, we can choose C1 = {0} such that
the third term in the above display vanishes. By Hölder’s inequality, we deduce that the
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first term can be bounded by ǫK as follows.

EΣ

[
sup
u∈N

1

n

∣∣∣
n

∑
i=1

σi(u(Zi)−cK
i (u))

∣∣∣
]

≤EΣ

[
sup
u∈N

1

n

( n

∑
i=1

|σi|
)( n

∑
i=1

max
i=1,···,n

{|u(Zi)−cK
i (u)|}

)]

≤ǫK.

Let Vj={cj(u)−cj+1(u) : u∈N}. Then by definition, the number of elements in Vj and Cj

satisfying
|Vj|≤ |Cj||Cj+1|≤ |Cj+1|2.

And the diameter of Vj denoted as Dj can be bounded as

Dj =sup
v∈Vj

‖v‖2 ≤
√

nsup
u∈N

‖cj(u)−cj+1(u)‖∞

≤
√

nsup
u∈N

‖cj(u)−u‖∞+‖u−cj+1(u)‖∞

≤
√

n(ǫj+ǫj+1)

≤3
√

nǫj+1.

Then,

EΣ

[
sup
u∈N

1

n

∣∣∣
K−1

∑
j=1

n

∑
i=1

σi(c
j
i(u)−c

j+1
i (u))

∣∣∣
]
≤

K−1

∑
j=1

EΣ

[
sup
v∈Vj

1

n

∣∣∣
n

∑
i=1

σivj

∣∣∣
]

≤
K−1

∑
j=1

Dj

n

√
2log(2|Vj|)

≤
K−1

∑
j=1

6ǫj+1√
n

√
log(2|Cj+1|),

where we use triangle inequality in the first inequality, and use Lemma 5.5 in the second
inequality. Putting all the above estimates together, we get

EΣ

[
sup
u∈N

1

n

∣∣∣∑
i

σiu(Zi)
∣∣∣
]
≤ǫK+

K−1

∑
j=1

6ǫj+1√
n

√
log(2|Cj+1|)

≤ǫK+
K

∑
j=1

12(ǫj−ǫj+1)√
n

√
log(2C

(
ǫj,N ,n

)
)

≤ǫK+
12√

n

∫ B

ǫK+1

√
log(2C (ǫ,N ,n))dǫ

≤ inf
0<δ<B

(
4δ+

12√
n

∫ B

δ

√
log(2C (ǫ,N ,n))dǫ

)
,
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where last inequality holds since for 0< δ<B, we can choose K to be the largest integer
such that ǫK+1>δ, at this time ǫK ≤4ǫK+2≤4δ.

Now we turn to handle the most difficult term supu∈N 2 |L4(u)−L̂4(u)|, where we
need to bound the Rademacher complexity of the non-Lipschitz composition of gradient
norm and ReLU2 network. We believe that the technique we used here is helpful for
bounding the statistical errors for other deep PDEs solvers where the main difficulties
is bounding the Rademacher complexity of non-Lipschitz composition induced by the
gradient operator.

Lemma 5.7.

EZn

[
sup

u∈N 2

|L4(u)−L̂4(u)|
]

≤EZn ,Σn

[
sup

u∈N 2

1

n

∣∣∣∑
i

σi‖∇u(Zi)‖2
∣∣∣
]

(5.2)

≤R(N 1,2)=EZn ,Σn

[
sup

u∈N 1,2

1

n

∣∣∣∑
i

σiu(Zi)
∣∣∣
]

(5.3)

≤ inf
0<δ<B

(
4δ+

12√
n

∫ B

δ

√
log(2C (ǫ,N 1,2,n))dǫ

)
. (5.4)

Proof. The proof of (5.2) is based on the symmetrization method used in the proof of
Lemma 5.4, we omit the detail here. The proof of (5.3) is a direct consequence of the
following claim. Claim: Let u be a function implemented by a ReLU2 network with
depth D and width W . Then ‖∇u‖2

2 can be implemented by a ReLU-ReLU2 network
with depth D+3 and width d(D+2)W .

Denote ReLU and ReLU2 as σ1 and σ2, respectively. As long as we show that each
partial derivative Diu (i= 1,2,··· ,d) can be implemented by a ReLU-ReLU2 network re-

spectively, we can easily obtain the network we desire, since, ‖∇u‖2
2=∑

d
i=1 |Diu|2 and the

square function can be implemented by x2=σ2(x)+σ2(−x).
Now we show that for any i= 1,2,··· ,d, Diu can be implemented by a ReLU-ReLU2

network. We deal with the first two layers in details since there are a little bit difference
for the first two layer and apply induction for layers k≥3. For the first layer, since σ

′
2(x)=

2σ1(x), we have for any q=1,2··· ,n1

Diu
(1)
q =Diσ2

(
d

∑
j=1

a
(1)
qj xj+b

(1)
q

)
=2σ1

(
d

∑
j=1

a
(1)
qj xj+b

(1)
q

)
·a(1)qi .

Hence Diu
(1)
q can be implemented by a ReLU-ReLU2 network with depth 2 and width W .

For the second layer,

Diu
(2)
q =Diσ2

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

)
=2σ1

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

)
·

n1

∑
j=1

a
(2)
qj Diu

(1)
j .
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Since σ1

(
∑

n1
j=1 a

(2)
qj u

(1)
j +b

(2)
q

)
and ∑

n1
j=1 a

(2)
qj Diu

(1)
j can be implemented by two ReLU-ReLU2

subnetworks, respectively, and the multiplication can also be implemented by

x·y= 1

4

[
(x+y)2−(x−y)2

]

=
1

4
[σ2(x+y)+σ2(−x−y)−σ2(x−y)−σ2(−x+y)],

we conclude that Diu
(2)
q can be implemented by a ReLU-ReLU2 network. We have

D
(

σ1

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

))
=2, W

(
σ1

(
n1

∑
j=1

a
(2)
qj u

(1)
j +b

(2)
q

))
≤W

and

D
(

n1

∑
j=1

a
(2)
qj Diu

(1)
j

)
=2, W

(
n1

∑
j=1

a
(2)
qj Diu

(1)
j

)
≤W .

Thus D
(

Diu
(2)
q

)
=3, W

(
Diu

(2)
q

)
≤max{2W ,4}.

Now we apply induction for layers k≥3. For the third layer,

Diu
(3)
q =Diσ2

(
n2

∑
j=1

a
(3)
qj u

(2)
j +b

(3)
q

)
=2σ1

(
n2

∑
j=1

a
(3)
qj u

(2)
j +b

(3)
q

)
·

n2

∑
j=1

a
(3)
qj Diu

(2)
j .

Since D
(
σ1

(
∑

n2
j=1 a

(3)
qj u

(2)
j +b

(3)
q

))
=3, W

(
σ1

(
∑

n2
j=1 a

(3)
qj u

(2)
j +b

(3)
q

))
≤W and

D
(

n2

∑
j=1

a
(3)
qj Diu

(2)
j

)
=4,W

(
n2

∑
j=1

a
(3)
qj Diu

(2)
j

)
≤max{2W ,4W}=4W ,

we conclude that Diu
(3)
q can be implemented by a ReLU-ReLU2 network and D(Diu

(3)
q

)
=

5, W(
Diu

(3)
q

)≤max{5W ,4}=5W .

We assume that Diu
(k)
q (q=1,2,··· ,nk) can be implemented by a ReLU-ReLU2 network

and D
(

Diu
(k)
q

)
= k+2, W

(
Diu

(3)
q

)
≤ (k+2)W . For the (k+1)−th layer,

Diu
(k+1)
q =Diσ2

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

)

=2σ1

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

)
·

nk

∑
j=1

a
(k+1)
qj Diu

(k)
j .

Since

D
(

σ1

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

))
= k+1, W

(
σ1

(
nk

∑
j=1

a
(k+1)
qj u

(k)
j +b

(k+1)
q

))
≤W
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and

D
(

nk

∑
j=1

a
(k+1)
qj Diu

(k)
j

)
= k+2, W

(
nk

∑
j=1

a
(k+1)
qj Diu

(k)
j

)
≤max{(k+2)W ,4W}=(k+2)W ,

we conclude that Diu
(k+1)
q can be implemented by a ReLU-ReLU2 network and

D
(

Diu
(k+1)
q

)
= k+3, W

(
Diu

(k+1)
q

)
≤max{(k+3)W ,4}=(k+3)W .

Hence we derive that Diu = Diu
D
1 can be implemented by a ReLU-ReLU2 network

and D(Diu) =D+2, W (Diu)≤ (D+2)W . Finally we obtain that D(‖∇u‖2
)
=D+3,

W (‖∇u‖2
)≤d(D+2)W .

The proof of (5.4) follows from Lemma 5.6.

By Lemma 5.4, Lemma 5.3, Lemma 5.6 and Lemma 5.7, we have to find upper bounds
for the converging numbers C (ǫ,N 2,n

)
and C (ǫ,N 1,2,n

)
used in the Dudley’s entropy

formula. To this end, we need the VC-dimension [45] and Pseudo-dimension [1].

Definition 5.4. Let N be a set of functions from X=Ω(∂Ω) to {0,1}. Suppose that S=
{x1,x2,··· ,xn}⊂ X. We say that S is shattered by N if for any b∈ {0,1}n , there exists a
u∈N satisfying

u(xi)=bi, i=1,2,··· ,n.

Definition 5.5. The VC-dimension of N , denoted as VCdim(N ), is defined to be the
maximum cardinality among all sets shattered by N .

VC-dimension reflects the capability of a class of functions to perform binary clas-
sification of points. The larger VC-dimension is, the stronger the capability to perform
binary classification is. For more discussion of VC-dimension, readers are referred to [1].

For real-valued functions, we can generalize the concept of VC-dimension into
pseudo-dimension [1].

Definition 5.6. Let N be a set of functions from X to R. Suppose that S={x1,x2,··· ,xn}⊂
X. We say that S is pseudo-shattered by N if there exists y1,y2,··· ,yn such that for any
b∈{0,1}n , there exists a u∈N satisfying

sign(u(xi)−yi)=bi, i=1,2,··· ,n,

and we say that {yi}n
i=1 witnesses the shattering.

Definition 5.7. The pseudo-dimension of N , denoted as Pdim(N ), is defined to be the
maximum cardinality among all sets pseudo-shattered by N .

The following proposition showing a relation between uniform covering number and
pseudo-dimension.
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Proposition 5.1 (Theorem 12.2, [1]). Let N be a set of real functions from a domain X to
the bounded interval [0,B]. Let ǫ>0. Then

C∞(ǫ,N ,n)≤
Pdim(N )

∑
i=1

(
n
i

)(B
ǫ

)i

,

which is less than
(

enB
ǫ·Pdim(N )

)Pdim(N )
for n≥Pdim(N ).

We now present the bound of pseudo-dimension for the N 1,2, the class of network
functions with ReLU and ReLU2 activation functions. We first need a lemma stated be-
low.

Lemma 5.8. Let p1,··· ,pm be polynomials with n variables of degree at most d. If n≤m, then

|{(sign(p1(x)),··· ,sign(pm(x))) : x∈R
n}|≤2

(
2emd

n

)n

.

Proof. See Theorem 8.3 in [1].

Theorem 5.1. Let

N :={u∈ [0,1]d : u can be implemented by a neural network

with depth no more than D and width no more than W ,

and activation function in each unit be the ReLU or the ReLU2}.

Then
Pdim(N )=O(D2W2(D+logW)).

Proof. The argument is follows from the proof of Theorem 6 in [2]. The result stated here
is somewhat stronger then Theorem 6 in [2] since VCdim(sign(N ))≤Pdim(N ).

We consider a new set of functions:

Ñ ={ũ(x,y)=sign(u(x)−y) : u∈H}.

It is clear that Pdim(N )≤ VCdim(Ñ ). We now bound the VC-dimension of Ñ . De-
noting M as the total number of parameters(weights and biases) in the neural network
implementing functions in N , in our case we want to derive the uniform bound for

K{xi},{yi}(m) := |{(sign(u(x1,a)−y1),··· ,sign(u(xm,a)−ym)) : a∈R
M}|

over all {xi}m
i=1 ⊂ X and {yi}m

i=1 ⊂ R. Actually the maximum of K{xi},{yi}(m) over all
{xi}m

i=1 ⊂ X and {yi}m
i=1 ⊂ R is the growth function GÑ (m). In order to apply Lemma

5.8, we partition the parameter space R
M into several subsets to ensure that in each

subset u(xi,a)−yi is a polynomial with respect to a without any breakpoints. In fact, our
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partition is exactly the same as the partition in [2]. Denote the partition as {P1,P2,··· ,PN}
with some integer N satisfying

N≤
D−1

∏
i=1

2

(
2emki(1+(i−1)2i−1)

Mi

)Mi

, (5.5)

where ki and Mi denotes the number of units at the ith layer and the total number of
parameters at the inputs to units in all the layers up to layer i of the neural network
implementing functions in N , respectively. See [2] for the construction of the partition.
Obviously we have

K{xi},{yi}(m)≤
N

∑
i=1

|{(sign(u(x1,a)−y1),··· ,sign(u(xm,a)−ym)) : a∈Pi}|. (5.6)

Note that u(xi,a)−yi is a polynomial with respect to a with degree the same as the degree
of u(xi,a), which is equal to 1+(D−1)2D−1 as shown in [2]. Hence by Lemma 5.8, we
have

|{(sign(u(x1,a)−y1),··· ,sign(u(xm,a)−ym)) : a∈Pi}|

≤2

(
2em(1+(D−1)2D−1)

MD

)MD

. (5.7)

Combining (5.5), (5.6), (5.7) yields

K{xi},{yi}(m)≤
D
∏
i=1

2

(
2emki(1+(i−1)2i−1)

Mi

)Mi

.

We then have

GÑ (m)≤
D
∏
i=1

2

(
2emki(1+(i−1)2i−1)

Mi

)Mi

,

since the maximum of K{xi},{yi}(m) over all {xi}m
i=1 ⊂ X and {yi}m

i=1 ⊂R is the growth
function GÑ (m). Some algebras as that of the proof of Theorem 6 in [2], we obtain

Pdim(N )≤O(D2W2 logU+D3W2
)
=O(D2W2(D+logW)

)
,

where U refers to the number of units of the neural network implementing functions in
N .

5.1 Main results

With the above preparation we present the main results of this paper in the scenario
Eopt=0.
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Theorem 5.2. Let u∗ be the solution of (2.1) with bounded f ,g,w and assume that u∗∈C2(Ω̄).
Let ûφ be the minimizer of deep Ritz method defined in (2.3) with n=N(M) random samples. If

we set the network parameters depth and width in the ReLU2 network N 2
D,W ,B as

D=⌈log2d⌉+2, W=Cd,‖u∗‖
C2(Ω̄)

n
d

d+2+ν .

Then,

EX,Y[‖ûφ−u∗‖2
H1(Ω)]≤C‖u∗‖C2(Ω̄),c1,c2,c3,dO(N−1/(d+2+ν)+M−1/(d+2+ν)),

where ν>0 but can be arbitrarily small.

Proof. In order to apply Lemma 5.6, we need to bound the term

1√
n

∫ B

δ

√
log(2C(ǫ,N ,n))dǫ

≤ B√
n
+

1√
n

∫ B

δ

√

log

(
enB

ǫ·Pdim(N )

)Pdim(N )

dǫ

≤ B√
n
+

(
Pdim(N )

n

)1/2∫ B

δ

√
log

(
enB

ǫ·Pdim(N )

)
dǫ,

where in the first inequality we use Proposition 5.1. Now we calculate the integral. Set

t=

√
log

(
enB

ǫ·Pdim(N )

)

then ǫ= enB
Pdim(N )

·e−t2
. Denote

t1=

√
log

(
enB

B·Pdim(N )

)
, t2=

√
log

(
enB

δ·Pdim(N )

)
.

And

∫ B

δ

√
log

(
enB

ǫ·Pdim(N )

)
dǫ

=
2enB

Pdim(N )

∫ t2

t1

t2e−t2
dt

=
2enB

Pdim(N )

∫ t2

t1

t

(
−e−t2

2

)′
dt
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=
enB

Pdim(N )

[
t1e−t2

1−t2e−t2
2+
∫ t2

t1

e−t2
dt

]

≤ enB
Pdim(N )

[
t1e−t2

1−t2e−t2
2+(t2−t1)e

−t2
1

]

≤ enB
Pdim(N )

·t2e−t2
1 =B

√
log

(
enB

δ·Pdim(N )

)
.

Choosing δ=B
(Pdim(N )

n

)1/2≤B, by Lemma 5.6 and the above display, we get for both

N =N 2 and N =N 1,2,

there holds

R(N )

≤4δ+
12√

n

∫ B

δ

√
log(2C(ǫ,N ,n))dǫ

≤4δ+
12B√

n
+12B

(
Pdim(N )

n

)1/2
√

log

(
enB

δ·Pdim(N )

)

≤28

√
3

2
B
(

Pdim(N )

n

)1/2
√

log

(
en

Pdim(N )

)
. (5.8)

Then by Lemmas 5.1, 5.3, 5.4, 5.6, 5.7 and Eq. (5.8), we have

Esta=2 sup
u∈N 2

|L(u)−L̂(u)|

≤2(c3+c3+c2
3)R(N 2)+2R(N 1,2)

≤56

√
3

2
(2c3+c2

3)B
(

Pdim(N 2)

n

)1/2
√

log

(
en

Pdim(N 2)

)

+56

√
3

2
B
(

Pdim(N 1,2)

n

)1/2
√

log

(
en

Pdim(N 1,2)

)
.

Since Pdim(N 2)≤Pdim(N 1,2), plugging the upper bound of Pdim(N 1,2) derived in The-
orem 5.1 into the above display and using the relationship of depth and width between
N 2 and N 1,2 proved in Lemma 5.7, we get

Esta≤CB,c3

[
d(D+3)(D+2)W

√
D+3+log(d(D+2)W)

n

]1−ν

, (5.9)
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where ν > 0 can be arbitrarily small. Combing (5.9) with the approximation error in

Theorem 4.2 and taking ǫ2=CB,c1,c2,c3
C
(

1
n

) 1
d+2+ν , we get that

EX,Y[‖ûφ−u∗‖2
H1(Ω)]

≤ 2

c1∧1


CB,c3

(
d(D+3)(D+2)W

√
D+3+log(d(D+2)W)

n

)1−µ

+
c3+1

2
ǫ2




≤ 2

c1∧1

[
CB,c3

(
d(⌈logd⌉+6)(⌈logd⌉+5)Cd,‖u∗‖C2(Ω̄)

(
1

ǫ

)d

·
√√√√⌈logd⌉+6+log

(
d(⌈logd⌉+5)·Cd,‖u∗‖

C2(Ω̄)

(
1
ǫ

)d
)

n




1−µ

+
c3+1

2
ǫ2




≤C‖u∗‖
C2(Ω̄)

,c1,c2,c3,dO
(

n−1/(d+2+ν)
)

.

This completes the proof.

Remark 5.1. Deep Ritz method is actually a kinds of deep nonparametric estimation
method where we estimate functions from random samples. The benefit is that we can
use DRM to handle PDEs in high dimension since only a small bach of samples is needed
during SGD training. In contrast, we have form the loading matrix and vector explicitly
in FEM. However, what we have to pay is that the convergence rate as illustrate as fol-
lows. Let N=N=O( 1

hd ), where h is the size of the mesh in FEM. From Theorem 5.2, we
get

EX,Y[‖ûφ−u∗‖2
H1(Ω)]=O(h

d
d+2+ν ).

In the case d=2, by Markov’s inequality and the above display, we get with high proba-
bility,

‖ûφ−u∗‖H1(Ω)≤O(h
1

4+ν ).

Comparing the well known results of FEM where the convergence rate in H1 norm is
O(h), the rate proved here for the DRM method is far from satisfactory.

In the literature of nonparametric regression, where functions living in certain func-
tion classes are estimated from n paired random samples, the best convergence rate in

H1 norm for estimating functions in H2 is O(n− 1
4+d ) [40]. Obviously, the nonparametric

learning task in DRM is not easier than nonparametric regressions. What we proved here

is O(n− 1
4+2d+ν ) in H1 norm with ν can be arbitrary small. We conjecture that the best con-

vergence rate in H1 norm of DRM with both n training samples in both the domain

and boundary is also O(n− 1
4+d ). Upon this conjecture, we get the optimal convergence

rate of DRM for d=2 is ‖ûφ−u∗‖H1(Ω)≤O(h
1
3 ) with high probability.
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The convergence rate of DRM proved here suffers the curse of dimensionality. One
possible direction to improve the convergence rate and reduce the curse of dimensional-
ity is considering solutions of PDE (2.1) with higher regularity. For example, if we assume
f ∈Hs(Ω), s≥1, deep Ritz method using deep neural network with ReLUs+2 activation
functions will reduce the curse since the higher regularity assumption can improve both
the approximation and statistical error. We leave the detail of this idea in a following up
work.

6 Conclusion and extension

In this paper, we provide a rigorous numerical analysis on deep Ritz method (DRM) [47]
for second order elliptic equations with Neumann boundary conditions. We establish
the first nonasymptotic convergence rate in H1 norm on DRM for general deep networks
with ReLU2 activation functions. In addition to provide theoretical justification of DRM,
our study also provides guidance on how to set the hyper-parameter of depth and width
to achieve the desired convergence rate in terms of number of training samples. Techni-
cally, we derive bounds on the approximation error of deep ReLU2 network in C1 norm
and on the Rademacher complexity of the non-Lipschitz composition of gradient norm
and ReLU2 network.

There are several directions for our future exploration. First, it is easy to extend the
current analysis for general second order elliptic equations with variational form under
Dirichlet or Robin boundary conditions. Second, the approximation and statistical error
bounds deriving here can be used for studying the nonasymptotic convergence rate for
residual based method (PINNS). Studying deep DGM by combing current analysis with
the tools for analyzing GAN [14] is also of immense interest.
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