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Backgrounds of the Generative Learning

Figure: History of Vision Generative AI

Prompt:
This ink sketch-style illustration depicts a
small hedgehog holding a piece of water-
melon with its tiny paws, happily closing its
eyes and taking small bites.

DALL-E 3

Chenguang Duan (RWTH Aachen) Characteristic Learning for Provable One Step Generation 3/25



Generative Learning

Problem Setup
▶ Known initial distribution µ0 on Rm.

▶ Samples drawn from an unknown target dsitribution on Rd:

S = {Xi}n
i=1 ∼i.i.d. µ1.

▶ Learning a push-forward map ĜS : Rm → Rd using data set S such that:

(ĜS)♯µ0 ≈ µ1.

ĜS

Generative model

µ0 = N(0, Id) (ĜS)♯µ0 ≈ µ1
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Stochastic Interpolations

X0 ∼ µ0 Xt := αtX0 + βtX1 X1 ∼ µ1

Interpolation between µ0 and µ1:

pt := Law(Xt) =
1
αt

∫
µ0

(x − βtx1
αt

)
µ1(x1)dx1, t ∈ (0, 1).

▶ Interpolation coefficients: α0 = β1 = 1 and α1 = β0 = 0.

αt βt

Linear 1 − t t
Föllmer flow

√
1 − t2 t
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Flow-based Generative Models

The interpolation density pt satisfies the transport equation:{
∂t pt(x) +∇ · (b∗(t, x)pt(x)) = 0, x ∈ Rd, t ∈ (0, 1),

p0(x) = µ0(x),

where the velocity field b∗ : R × Rd → Rd is defined as b∗(t, x) = E
[
α̇tX0 + β̇tX1

∣∣Xt = x
]
.

The characteristic of the transport equation: Probability Flow ODE

dx(t)
dt

= b∗(t, x(t)), t ∈ (0, 1), x(0) = x0 ∼ µ0. The marginal density of x(t) is pt

▶ How can we estimate the velocity fields b∗ : R × Rd → Rd?
▶ How can we sample from the target distribution given an estimator of the velocity field?
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Training Phase

Learn the velocity field b∗ : R × Rd → Rd.

b∗(t, x) = E
[
α̇tX0 + β̇tX1

∣∣Xt = x
]

▶ Population risk:

b∗ = arg min
b:R×Rd→Rd

L(b) :=
∫ T

0
E(X0,X1)∼µ0×µ1

[
∥α̇tX0 + β̇tX1 − b(t, αtX0 + βtX1)∥2

2
]
dt.

▶ Empirical risk minimization:

b̂ ∈ arg min
b∈B

L̂(b) :=
1
n

n

∑
i=1

∥α̇t(i)X
(i)
0 + β̇t(i)X

(i)
1 − b(t, αt(i)X

(i)
0 + βt(i)X

(i)
1 )∥2

2.

▶ B is a neural network class.
▶ (X(1)

0 , X(1)
1 ), . . . , (X(n)

0 , X(n)
1 ) ∼i.i.d. µ0 × µ1, and t(1), . . . , t(n) ∼i.i.d. unif(0, T)
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Inference Phase

Euler discretization of the probability flow ODE:

dx(t)
dt

= b̂(t, x(t)), t ∈ (0, 1), x(0) = x0 ∼ µ0.

▶ Time points: 0 = t0 < t1 < . . . < tK = T with tk = hk.

▶ Euler approximation:

dx̂(t)
dt

= b̂(t, x̂(tk−1)), t ∈ (tk−1, tk), 1 ≤ k ≤ K, x̂(0) = x̂0 ∼ µ0.

or, equivalently,

x̂(tk) = x̂(tk−1) + hb̂(tk−1, x̂(tk−1)), 1 ≤ k ≤ K, x̂0 ∼ µ0. Law(x̂K) ≈ µ1

Sampling from flow-based generative models is computationally expensive because it requires numerous

evaluations of the large-scale velocity neural network b̂.
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Characteristic Learning: Distillation for One-Step Generation

The probability flow ODE specify a deterministic flow map:

g∗t,s : Rd → Rd, xt 7→ xs, 0 ≤ t ≤ s < 1. (g∗t,s)♯pt ≈ ps

Goal: Estimate the two-parameter flow map g∗t,s by a deep neural network.

Characteristic Matching:
Approximate characteristics generated by Euler discretization: {x̂(i)k := x̂(i)(tk)}n

i=1.

ĝ ∈ arg min
g∈G

R̂(g) :=
2

mK2

m

∑
i=1

K−1

∑
k=0

{1
2
∥x̂(i)k − g(tk, tk, x̂(i)k )∥2

2 +
K−1

∑
ℓ=k+1

∥x̂(i)ℓ − g(tk, tℓ, x̂(i)k )∥2
2

}
.

ĝ0,T

One-Step Generation

X0 ∼ µ0 = N(0, Id) ĝ0,T(X0) ∼ µ̂T ≈ µ1
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X0 ∼ µ0 = N(0, Id) ĝ0,T(X0) ∼ µ̂T ≈ µ1

Chenguang Duan (RWTH Aachen) Characteristic Learning for Provable One Step Generation 10/25



Characteristic Learning: Distillation for One-Step Generation

The probability flow ODE specify a deterministic flow map:

g∗t,s : Rd → Rd, xt 7→ xs, 0 ≤ t ≤ s < 1. (g∗t,s)♯pt ≈ ps

Goal: Estimate the two-parameter flow map g∗t,s by a deep neural network.

Characteristic Matching:
Approximate characteristics generated by Euler discretization: {x̂(i)k := x̂(i)(tk)}n

i=1.
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Assumptions

▶ A1. (Prior distribution) The prior distribution µ0 = N(0, Id).

▶ A2. (Target distribution) There exists an unknown constant σ > 0, such that

µ1(x) = N(0, σ2Id) ∗ ν :=
∫

φd

(x − x′

σ

)
dν(x′),

where φd represents the d-dimensinoal density of the standard Gaussian distribution, and
dν(x) = p(x)dx with supp(ν) ⊆ [0, 1]d.
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Regularity of Probability ODE

Under Assumptions A1. and A2.

▶ Local bounded velocity:

∥b∗(t, x)∥∞ ≤ BvelR, 0 ≤ t ≤ 1, x ∈ B∞
R .

▶ Bounded spatial gradient of velocity:

∥∇b∗(t, x)∥op ≤ G, 0 ≤ t ≤ 1, x ∈ Rd.

▶ Bounded time derivative of velocity:

∥∂tb∗(t, x)∥2 ≤ D sup
t∈[0,T]

( α̇2
t

α2
t
+

|α̈t|
αt

)
R, 0 ≤ t ≤ T < 1, x ∈ B∞

R .
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Regularity of Probability ODE

Under Assumptions A1. and A2.

▶ Local bounded flow map:

∥g∗(t, s, x)∥∞ ≤ BflowR, 0 ≤ t ≤ s ≤ 1, x ∈ B∞
R .

▶ Bounded spatial gradient of flow map:

∥∇g∗(t, s, x)∥op ≤ exp(G(s − t)), 0 ≤ t ≤ 1, x ∈ B∞
R .

▶ Local bounded time derivative of flow map:

max
{
∥∂tg∗(t, s, x)∥2, ∥∂sg∗(t, s, x)∥2} ≤ B′

flowR, 0 ≤ t ≤ s ≤ 1, x ∈ B∞
R .
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Error Analysis for Velocity Matching

Time-average L2-risk:

ET(b) =
1
T

∫ T

0
EXt

[
∥b(t, Xt)− b∗(t, Xt)∥2

2
]
dt

Time-average truncated L2-risk:

ET,R(b) =
1
T

∫ T

0
EXt

[
∥b(t, Xt)− b∗(t, Xt)∥2

21{∥Xt∥∞ ≤ R}
]
dt

Oracle inequality of velocity matching (Ding-Duan-Jiao-Li-Yang-Zhang)
Under Assumptions A1 and A2. Consider the linear interpolant αt = 1 − t and βt = t.

E[ET(b)] ≲ inf
b∈B

ET,R(b)︸ ︷︷ ︸
approximation

+ R2 max
1≤k≤d

VCdim(ΠkB)

n log−1(n)︸ ︷︷ ︸
generallization

+ R2 exp(−θR2)︸ ︷︷ ︸
truncation
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Error Analysis for Velocity Matching

Let T ∈ (1/2, 1) and R ∈ (1,+∞). Set the hypothesis class B as

B =

b ∈ N(L, S) :
∥b(t, x)∥∞ ≤ BvelR, ∥∂tb(t, x)∥2 ≤ 3D sup

t∈[0,T]

( α̇2
t

α2
t
+

|α̈t|
αt

)
R,

∥∇b(t, x)∥op ≤ 3G, (t, x) ∈ [0, T]× Rd

 ,

where the depth and the width of the neural network are given, respectively, as L = C and
S = CNd+1. Then the following inequalities holds for each N ∈ N+,

▶ approximation error

inf
b∈B

ET,R(b) ≲ sup
t∈[0,T]

( α̇2
t

α2
t
+

|α̈t|
αt

)2
R2N−2.

▶ generalization error
VCdim(ΠkB) ≲ Nd+1 log N.
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Error Analysis for Velocity Matching

Convergence rate of velocity matching (Ding-Duan-Jiao-Li-Yang-Zhang)
Under Assumptions A1 and A2. Let T ∈ (1/2, 1). Set the hypothesis class B as

B =


b ∈ N(L, S) :

∥b(t, x)∥∞ ≤ Bvel log1/2 n,

∥∂tb(t, x)∥2 ≤ 3D sup
t∈[0,T]

( α̇2
t

α2
t
+

|α̈t|
αt

)
log1/2 n,

∥∇b(t, x)∥op ≤ 3G, (t, x) ∈ [0, T]× Rd


,

where the depth and the width of the neural network are given, respectively, as L = C
and S = Cn

d+1
d+3 . Then

E[ET(b)] ≲ sup
t∈[0,T]

( α̇2
t

α2
t
+

|α̈t|
αt

)2
n− 2

d+3 log2 n.
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Error Analysis for Characteristic Learning

Convergence rate of characteristic learning (Ding-Duan-Jiao-Li-Yang-Zhang)
Under Assumptions A1 and A2. Consider the linear interpolant αt = 1 − t and βt = t.

▶ Set the stopping time T as T = 1 − Cn− 1
3(d+3) log

1
2 n.

▶ The number of iterations of Euler sampling satisfies K ≥ Cn
1

d+3 .

▶ The depth LB and the number of non-zero parameters SB of the velocity network

class B are set, respectively, as LB = C and SB = Cn
(d+1)(3d+7)

3(d+3)2 .

▶ The depth LG and the number of non-zero parameters SG of the characteristic
network class G are set, respectively, as LG = C and SG = Cm

d+2
d+4 .

Then the time-average squared 2-Wasserstein error can be bounded as:

E
[ 2

T2

∫ T

0

∫ T

t
W2

2 ((ĝt,s)♯µt, µs)dsdt
]

≲ n− 2
3(d+3) log2 n + m− 2

d+4 log2 m +
max{log n, log m}

K
.
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Mitigate the Curse of Dimensionality

▶ A3. There exists an unknown constant σ > 0 and d∗ ≪ d, such that

µ1 = N(0, σ2Id) ∗ (P♯ ν̃),

where P ∈ Rd×d∗ is a matrix whose column vectors are orthonormal in Rd, and ν̃ is a
distribution with supp(ν̃) ⊆ [0, 1]d

∗
.
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Mitigate the Curse of Dimensionality

Low-dimensional decomposition
For each (t, s, x) with 0 ≤ t ≤ s ≤ 1 and x ∈ Rd,

b∗(t, x) ≡ P b̃∗(t, P⊤x
)
+

αtα̇t + σ2βt β̇t

α2
t + σ2β2

t
(Id − PP⊤)x,

g∗(t, s, x) ≡ P g̃∗
(
t, s, P⊤x

)
+

√
α2

s + σ2β2
s

α2
t + σ2β2

t
(Id − PP⊤)x.

The vector field b̃∗ : R × Rd∗ → Rd∗ is defined as:

b̃∗(t, x̃) := E[α̇tX̃0 + β̇tX̃1|X̃t = x̃], x̃ ∈ Rd∗ ,

where X̃0 ∼ N(0, Id∗ ) and X̃1 ∼ N(0, σ2Id∗ ) ∗ ν̃ are independent, and X̃t := αtX̃0 + βtX̃1. Further,
the vector field g̃∗ : R × R × Rd∗ → Rd∗ is defined as the flow map of dx̃(t) = b̃∗(t, x̃(t))dt.
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Mitigate the Curse of Dimensionality

Convergence rate under manifold assumption (Ding-Duan-Jiao-Li-Yang-Zhang)
Under Assumptions A1 and A3. Consider the linear interpolant αt = 1 − t and βt = t.

▶ Set the stopping time T as T = 1 − Cn− 1
3(d∗+3) log

1
2 n.

▶ The number of iterations of Euler sampling satisfies K ≥ Cn
1

d∗+3 .

▶ The depth LB and the number of non-zero parameters SB of the velocity network

class B are set, respectively, as LB = C and SB = Cn
(d∗+1)(3d∗+7)

3(d∗+3)2 .

▶ The depth LG and the number of non-zero parameters SG of the characteristic

network class G are set, respectively, as LG = C and SG = Cm
d∗+2
d∗+4 .

Then the time-average squared 2-Wasserstein error can be bounded as:

E
[ 2

T2

∫ T

0

∫ T

t
W2

2 ((ĝt,s)♯µt, µs)dsdt
]

≲ n− 2
3(d∗+3) log2 n + m− 2

d∗+4 log2 m +
max{log n, log m}

K
.
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Performance Comparisons on CIFAR-10

1 2 5 10 20

NFE

1 2 5 10 20

NFE

1 2 5 10 20

NFE

1 2 5 10 20

NFE

ODE-EI  EulerCG CG
Model NFE ↓ FID ↓

Diffusion + Sampler
DDPM 1000 3.17
DDIM 100 4.16

Score SDE 2000 2.20
EDM 35 2.01

Diffusion + Distillation
KD 1 9.36

DFNO 1 5.92
Rectified Flow 1 4.85

PD 1 9.12
CD 1 10.53

CTM (without GAN) 1 5.19
CG (ours) 1 4.59

PD 2 4.51
CTM (without GAN) 18 3.00

CG (ours) 2 3.50
CG (ours) 4 2.83
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High-Resolution Images Generation
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Conclusions

▶ End-to-end error analysis for flow-based generative models and distilled model.

[1] Zhao Ding, Chenguang Duan, Yuling Jiao, Ruoxuan Li, Jerry Zhijian Yang, and Pingwen
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Chenguang Duan (RWTH Aachen) Characteristic Learning for Provable One Step Generation 25/25


	Backgrounds of Flow-based Models
	Characteristic Learning
	Error Analysis for Characteristic Learning
	Numerical Experiments
	Conclusions

