

Characteristic Learning for Provable One Step Generation

Chenguang Duan
Wuhan University

Joint work with **Zhao Ding** (WHU), **Yuling Jiao** (WHU), **Ruoxuan Li** (WHU),
Jerry Zhijian Yang (WHU), and **Pingwen Zhang** (WHU, PKU)

Outline

- ① Backgrounds of Flow-based Models
- ② Characteristic Learning
- ③ Error Analysis for Characteristic Learning
- ④ Numerical Experiments
- ⑤ Conclusions

Backgrounds of the Generative Learning

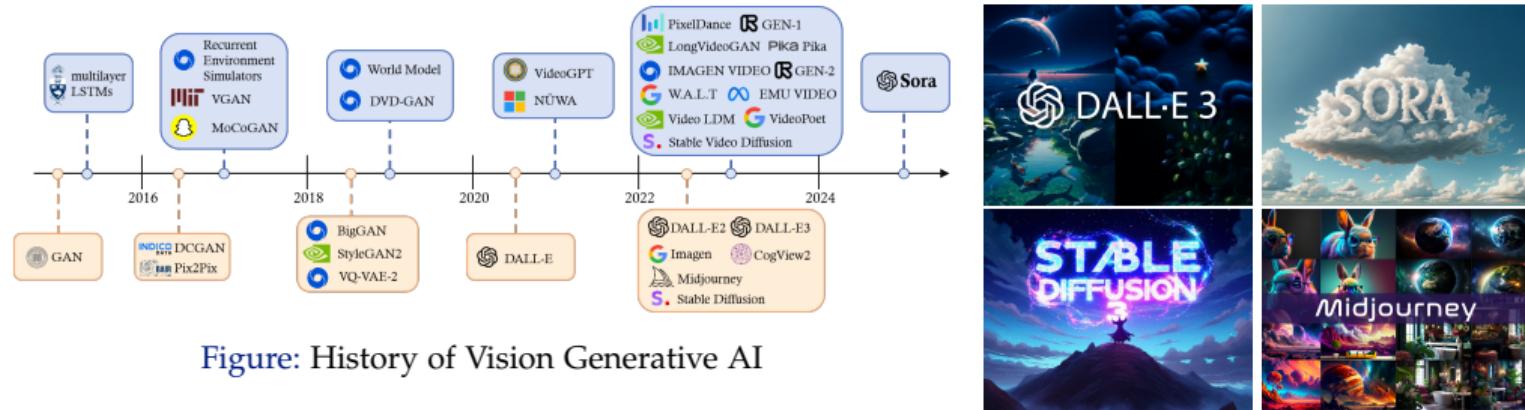


Figure: History of Vision Generative AI

Prompt:

This ink sketch-style illustration depicts a small hedgehog holding a piece of watermelon with its tiny paws, happily closing its eyes and taking small bites.

DALL-E 3

Generative Learning

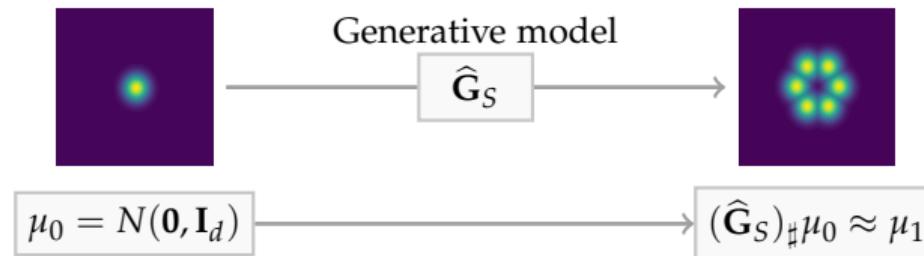
Problem Setup

- ▶ Known initial distribution μ_0 on \mathbb{R}^m .
- ▶ Samples drawn from an unknown target distribution on \mathbb{R}^d :

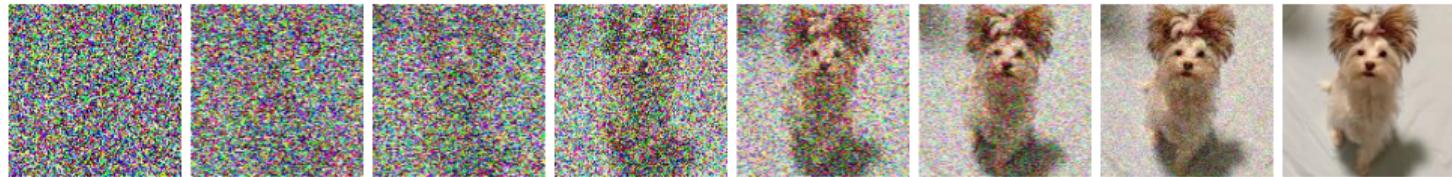
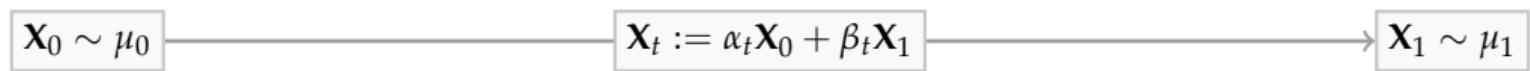
$$S = \{\mathbf{X}_i\}_{i=1}^n \sim \text{i.i.d. } \mu_1.$$

- ▶ Learning a push-forward map $\hat{\mathbf{G}}_S : \mathbb{R}^m \rightarrow \mathbb{R}^d$ using data set S such that:

$$(\hat{\mathbf{G}}_S)_\sharp \mu_0 \approx \mu_1.$$



Stochastic Interpolations



Interpolation between μ_0 and μ_1 :

$$p_t := \text{Law}(\mathbf{X}_t) = \frac{1}{\alpha_t} \int \mu_0\left(\frac{\mathbf{x} - \beta_t \mathbf{x}_1}{\alpha_t}\right) \mu_1(\mathbf{x}_1) d\mathbf{x}_1, \quad t \in (0, 1).$$

	α_t	β_t
Linear	$1 - t$	t
Föllmer flow	$\sqrt{1 - t^2}$	t

- Interpolation coefficients: $\alpha_0 = \beta_1 = 1$ and $\alpha_1 = \beta_0 = 0$.

Flow-based Generative Models

The interpolation density p_t satisfies the **transport equation**:

$$\begin{cases} \partial_t p_t(\mathbf{x}) + \nabla \cdot (\mathbf{b}^*(t, \mathbf{x}) p_t(\mathbf{x})) = 0, & \mathbf{x} \in \mathbb{R}^d, t \in (0, 1), \\ p_0(\mathbf{x}) = \mu_0(\mathbf{x}), \end{cases}$$

where the **velocity field** $\mathbf{b}^* : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined as $\mathbf{b}^*(t, \mathbf{x}) = \mathbb{E}[\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 | \mathbf{X}_t = \mathbf{x}]$.

The interpolation density p_t satisfies the **transport equation**:

$$\begin{cases} \partial_t p_t(\mathbf{x}) + \nabla \cdot (\mathbf{b}^*(t, \mathbf{x}) p_t(\mathbf{x})) = 0, & \mathbf{x} \in \mathbb{R}^d, t \in (0, 1), \\ p_0(\mathbf{x}) = \mu_0(\mathbf{x}), \end{cases}$$

where the **velocity field** $\mathbf{b}^* : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined as $\mathbf{b}^*(t, \mathbf{x}) = \mathbb{E}[\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 | \mathbf{X}_t = \mathbf{x}]$.

The characteristic of the transport equation: **Probability Flow ODE**

$$\frac{d\mathbf{x}(t)}{dt} = \mathbf{b}^*(t, \mathbf{x}(t)), \quad t \in (0, 1), \quad \mathbf{x}(0) = \mathbf{x}_0 \sim \mu_0.$$

The marginal density of $\mathbf{x}(t)$ is p_t

- ▶ How can we estimate the velocity fields $\mathbf{b}^* : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$?
- ▶ How can we sample from the target distribution given an estimator of the velocity field?

Training Phase

Learn the velocity field $\mathbf{b}^* : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$.

$$\mathbf{b}^*(t, \mathbf{x}) = \mathbb{E}[\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 | \mathbf{X}_t = \mathbf{x}]$$

Training Phase

Learn the velocity field $\mathbf{b}^* : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$.

$$\mathbf{b}^*(t, \mathbf{x}) = \mathbb{E}[\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 \mid \mathbf{X}_t = \mathbf{x}]$$

- ▶ Population risk:

$$\mathbf{b}^* = \arg \min_{\mathbf{b}: \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d} L(\mathbf{b}) := \int_0^T \mathbb{E}_{(\mathbf{X}_0, \mathbf{X}_1) \sim \mu_0 \times \mu_1} [\|\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 - \mathbf{b}(t, \alpha_t \mathbf{X}_0 + \beta_t \mathbf{X}_1)\|_2^2] dt.$$

Training Phase

Learn the velocity field $\mathbf{b}^* : \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d$.

$$\mathbf{b}^*(t, \mathbf{x}) = \mathbb{E}[\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 \mid \mathbf{X}_t = \mathbf{x}]$$

► Population risk:

$$\mathbf{b}^* = \arg \min_{\mathbf{b}: \mathbb{R} \times \mathbb{R}^d \rightarrow \mathbb{R}^d} L(\mathbf{b}) := \int_0^T \mathbb{E}_{(\mathbf{X}_0, \mathbf{X}_1) \sim \mu_0 \times \mu_1} [\|\dot{\alpha}_t \mathbf{X}_0 + \dot{\beta}_t \mathbf{X}_1 - \mathbf{b}(t, \alpha_t \mathbf{X}_0 + \beta_t \mathbf{X}_1)\|_2^2] dt.$$

► Empirical risk minimization:

$$\hat{\mathbf{b}} \in \arg \min_{\mathbf{b} \in \mathcal{B}} \hat{L}(\mathbf{b}) := \frac{1}{n} \sum_{i=1}^n \|\dot{\alpha}_{t^{(i)}} \mathbf{X}_0^{(i)} + \dot{\beta}_{t^{(i)}} \mathbf{X}_1^{(i)} - \mathbf{b}(t^{(i)}, \alpha_{t^{(i)}} \mathbf{X}_0^{(i)} + \beta_{t^{(i)}} \mathbf{X}_1^{(i)})\|_2^2.$$

- \mathcal{B} is a neural network class.
- $(\mathbf{X}_0^{(1)}, \mathbf{X}_1^{(1)}), \dots, (\mathbf{X}_0^{(n)}, \mathbf{X}_1^{(n)}) \sim^{\text{i.i.d.}} \mu_0 \times \mu_1$, and $t^{(1)}, \dots, t^{(n)} \sim^{\text{i.i.d.}} \text{unif}(0, T)$

Inference Phase

Euler discretization of the probability flow ODE:

$$\frac{d\mathbf{x}(t)}{dt} = \hat{\mathbf{b}}(t, \mathbf{x}(t)), \quad t \in (0, 1), \quad \mathbf{x}(0) = \mathbf{x}_0 \sim \mu_0.$$

- ▶ Time points: $0 = t_0 < t_1 < \dots < t_K = T$ with $t_k = hk$.
- ▶ Euler approximation:

$$\frac{d\hat{\mathbf{x}}(t)}{dt} = \hat{\mathbf{b}}(t, \hat{\mathbf{x}}(t_{k-1})), \quad t \in (t_{k-1}, t_k), \quad 1 \leq k \leq K, \quad \hat{\mathbf{x}}(0) = \hat{\mathbf{x}}_0 \sim \mu_0.$$

or, equivalently,

$$\hat{\mathbf{x}}(t_k) = \hat{\mathbf{x}}(t_{k-1}) + h\hat{\mathbf{b}}(t_{k-1}, \hat{\mathbf{x}}(t_{k-1})), \quad 1 \leq k \leq K, \quad \hat{\mathbf{x}}_0 \sim \mu_0. \quad \text{Law}(\hat{\mathbf{x}}_K) \approx \mu_1$$

Inference Phase

Euler discretization of the probability flow ODE:

$$\frac{d\mathbf{x}(t)}{dt} = \hat{\mathbf{b}}(t, \mathbf{x}(t)), \quad t \in (0, 1), \quad \mathbf{x}(0) = \mathbf{x}_0 \sim \mu_0.$$

- ▶ Time points: $0 = t_0 < t_1 < \dots < t_K = T$ with $t_k = hk$.
- ▶ Euler approximation:

$$\frac{d\hat{\mathbf{x}}(t)}{dt} = \hat{\mathbf{b}}(t, \hat{\mathbf{x}}(t_{k-1})), \quad t \in (t_{k-1}, t_k), \quad 1 \leq k \leq K, \quad \hat{\mathbf{x}}(0) = \hat{\mathbf{x}}_0 \sim \mu_0.$$

or, equivalently,

$$\hat{\mathbf{x}}(t_k) = \hat{\mathbf{x}}(t_{k-1}) + h\hat{\mathbf{b}}(t_{k-1}, \hat{\mathbf{x}}(t_{k-1})), \quad 1 \leq k \leq K, \quad \hat{\mathbf{x}}_0 \sim \mu_0. \quad \text{Law}(\hat{\mathbf{x}}_K) \approx \mu_1$$

Sampling from flow-based generative models is computationally expensive because it requires numerous evaluations of the large-scale velocity neural network $\hat{\mathbf{b}}$.

Outline

- ① Backgrounds of Flow-based Models
- ② Characteristic Learning
- ③ Error Analysis for Characteristic Learning
- ④ Numerical Experiments
- ⑤ Conclusions

Characteristic Learning: Distillation for One-Step Generation

The probability flow ODE specify a deterministic flow map:

$$\mathbf{g}_{t,s}^* : \mathbb{R}^d \rightarrow \mathbb{R}^d, \quad \mathbf{x}_t \mapsto \mathbf{x}_s, \quad 0 \leq t \leq s < 1. \quad (\mathbf{g}_{t,s}^*)^\sharp p_t \approx p_s$$

Goal: Estimate the two-parameter flow map $\mathbf{g}_{t,s}^*$ by a deep neural network.

Characteristic Learning: Distillation for One-Step Generation

The probability flow ODE specify a deterministic flow map:

$$\mathbf{g}_{t,s}^* : \mathbb{R}^d \rightarrow \mathbb{R}^d, \quad \mathbf{x}_t \mapsto \mathbf{x}_s, \quad 0 \leq t \leq s < 1. \quad (\mathbf{g}_{t,s}^*)_{\sharp} p_t \approx p_s$$

Goal: Estimate the two-parameter flow map $\mathbf{g}_{t,s}^*$ by a deep neural network.

Characteristic Matching:

Approximate characteristics generated by Euler discretization: $\{\hat{\mathbf{x}}_k^{(i)} := \hat{\mathbf{x}}^{(i)}(t_k)\}_{i=1}^n$.

$$\hat{\mathbf{g}} \in \arg \min_{\mathbf{g} \in \mathcal{G}} \hat{R}(\mathbf{g}) := \frac{2}{mK^2} \sum_{i=1}^m \sum_{k=0}^{K-1} \left\{ \frac{1}{2} \|\hat{\mathbf{x}}_k^{(i)} - \mathbf{g}(t_k, t_k, \hat{\mathbf{x}}_k^{(i)})\|_2^2 + \sum_{\ell=k+1}^{K-1} \|\hat{\mathbf{x}}_{\ell}^{(i)} - \mathbf{g}(t_k, t_{\ell}, \hat{\mathbf{x}}_k^{(i)})\|_2^2 \right\}.$$

Characteristic Learning: Distillation for One-Step Generation

The probability flow ODE specify a deterministic flow map:

$$\mathbf{g}_{t,s}^* : \mathbb{R}^d \rightarrow \mathbb{R}^d, \quad \mathbf{x}_t \mapsto \mathbf{x}_s, \quad 0 \leq t \leq s < 1.$$

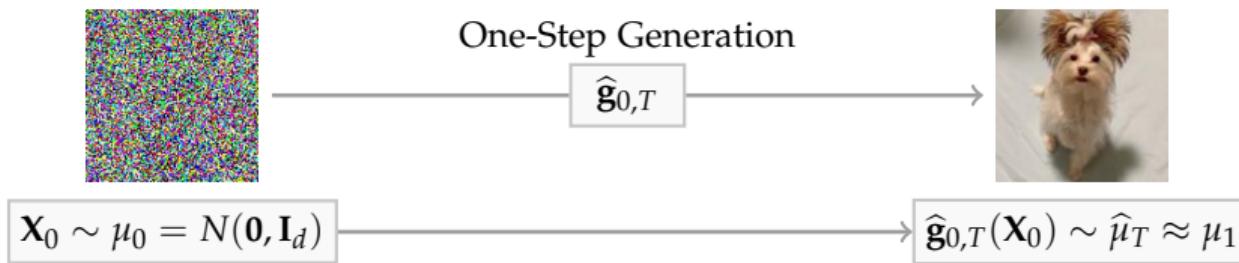
$$(\mathbf{g}_{t,s}^*)^\# p_t \approx p_s$$

Goal: Estimate the two-parameter flow map $\mathbf{g}_{t,s}^*$ by a deep neural network.

Characteristic Matching:

Approximate characteristics generated by Euler discretization: $\{\hat{\mathbf{x}}_k^{(i)} := \hat{\mathbf{x}}^{(i)}(t_k)\}_{i=1}^n$.

$$\hat{\mathbf{g}} \in \arg \min_{\mathbf{g} \in \mathcal{G}} \hat{R}(\mathbf{g}) := \frac{2}{mK^2} \sum_{i=1}^m \sum_{k=0}^{K-1} \left\{ \frac{1}{2} \|\hat{\mathbf{x}}_k^{(i)} - \mathbf{g}(t_k, t_k, \hat{\mathbf{x}}_k^{(i)})\|_2^2 + \sum_{\ell=k+1}^{K-1} \|\hat{\mathbf{x}}_\ell^{(i)} - \mathbf{g}(t_k, t_\ell, \hat{\mathbf{x}}_k^{(i)})\|_2^2 \right\}.$$



Outline

- ① Backgrounds of Flow-based Models
- ② Characteristic Learning
- ③ Error Analysis for Characteristic Learning
- ④ Numerical Experiments
- ⑤ Conclusions

Assumptions

- ▶ **A1.** (Prior distribution) The prior distribution $\mu_0 = N(\mathbf{0}, \mathbf{I}_d)$.
- ▶ **A2.** (Target distribution) There exists an unknown constant $\sigma > 0$, such that

$$\mu_1(\mathbf{x}) = N(\mathbf{0}, \sigma^2 \mathbf{I}_d) * \nu := \int \varphi_d\left(\frac{\mathbf{x} - \mathbf{x}'}{\sigma}\right) d\nu(\mathbf{x}'),$$

where φ_d represents the d -dimensional density of the standard Gaussian distribution, and $d\nu(\mathbf{x}) = p(\mathbf{x})d\mathbf{x}$ with $\text{supp}(\nu) \subseteq [0, 1]^d$.

Regularity of Probability ODE

Under Assumptions **A1.** and **A2.**

- ▶ Local bounded velocity:

$$\|\mathbf{b}^*(t, \mathbf{x})\|_\infty \leq B_{\text{vel}} R, \quad 0 \leq t \leq 1, \mathbf{x} \in \mathbb{B}_R^\infty.$$

- ▶ Bounded spatial gradient of velocity:

$$\|\nabla \mathbf{b}^*(t, \mathbf{x})\|_{\text{op}} \leq G, \quad 0 \leq t \leq 1, \mathbf{x} \in \mathbb{R}^d.$$

- ▶ Bounded time derivative of velocity:

$$\|\partial_t \mathbf{b}^*(t, \mathbf{x})\|_2 \leq D \sup_{t \in [0, T]} \left(\frac{\dot{\alpha}_t^2}{\alpha_t^2} + \frac{|\ddot{\alpha}_t|}{\alpha_t} \right) R, \quad 0 \leq t \leq T < 1, \mathbf{x} \in \mathbb{B}_R^\infty.$$

Regularity of Probability ODE

Under Assumptions **A1.** and **A2.**

- ▶ Local bounded flow map:

$$\|\mathbf{g}^*(t, s, \mathbf{x})\|_\infty \leq B_{\text{flow}} R, \quad 0 \leq t \leq s \leq 1, \quad \mathbf{x} \in \mathbb{B}_R^\infty.$$

- ▶ Bounded spatial gradient of flow map:

$$\|\nabla \mathbf{g}^*(t, s, \mathbf{x})\|_{\text{op}} \leq \exp(G(s - t)), \quad 0 \leq t \leq 1, \quad \mathbf{x} \in \mathbb{B}_R^\infty.$$

- ▶ Local bounded time derivative of flow map:

$$\max \{ \|\partial_t \mathbf{g}^*(t, s, \mathbf{x})\|_2, \|\partial_s \mathbf{g}^*(t, s, \mathbf{x})\|_2 \} \leq B'_{\text{flow}} R, \quad 0 \leq t \leq s \leq 1, \quad \mathbf{x} \in \mathbb{B}_R^\infty.$$

Error Analysis for Velocity Matching

Time-average L^2 -risk:

$$\mathcal{E}_T(\mathbf{b}) = \frac{1}{T} \int_0^T \mathbb{E}_{\mathbf{X}_t} [\|\mathbf{b}(t, \mathbf{X}_t) - \mathbf{b}^*(t, \mathbf{X}_t)\|_2^2] dt$$

Time-average truncated L^2 -risk:

$$\mathcal{E}_{T,R}(\mathbf{b}) = \frac{1}{T} \int_0^T \mathbb{E}_{\mathbf{X}_t} [\|\mathbf{b}(t, \mathbf{X}_t) - \mathbf{b}^*(t, \mathbf{X}_t)\|_2^2 \mathbb{1}\{\|\mathbf{X}_t\|_\infty \leq R\}] dt$$

Oracle inequality of velocity matching (Ding-Duan-Jiao-Li-Yang-Zhang)

Under Assumptions **A1** and **A2**. Consider the linear interpolant $\alpha_t = 1 - t$ and $\beta_t = t$.

$$\mathbb{E}[\mathcal{E}_T(\mathbf{b})] \lesssim \underbrace{\inf_{b \in \mathcal{B}} \mathcal{E}_{T,R}(\mathbf{b})}_{\text{approximation}} + \underbrace{R^2 \max_{1 \leq k \leq d} \frac{\text{VCdim}(\Pi_k \mathcal{B})}{n \log^{-1}(n)}}_{\text{generallization}} + \underbrace{R^2 \exp(-\theta R^2)}_{\text{truncation}}$$

Error Analysis for Velocity Matching

Let $T \in (1/2, 1)$ and $R \in (1, +\infty)$. Set the hypothesis class \mathcal{B} as

$$\mathcal{B} = \left\{ \mathbf{b} \in N(L, S) : \begin{array}{l} \|\mathbf{b}(t, \mathbf{x})\|_\infty \leq B_{\text{vel}}R, \|\partial_t \mathbf{b}(t, \mathbf{x})\|_2 \leq 3D \sup_{t \in [0, T]} \left(\frac{\dot{\alpha}_t^2}{\alpha_t^2} + \frac{|\ddot{\alpha}_t|}{\alpha_t} \right) R, \\ \|\nabla \mathbf{b}(t, \mathbf{x})\|_{\text{op}} \leq 3G, (t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d \end{array} \right\},$$

where the depth and the width of the neural network are given, respectively, as $L = C$ and $S = CN^{d+1}$. Then the following inequalities holds for each $N \in \mathbb{N}_+$,

- ▶ approximation error

$$\inf_{\mathbf{b} \in \mathcal{B}} \mathcal{E}_{T, R}(\mathbf{b}) \lesssim \sup_{t \in [0, T]} \left(\frac{\dot{\alpha}_t^2}{\alpha_t^2} + \frac{|\ddot{\alpha}_t|}{\alpha_t} \right)^2 R^2 N^{-2}.$$

- ▶ generalization error

$$\text{VCdim}(\Pi_k \mathcal{B}) \lesssim N^{d+1} \log N.$$

Error Analysis for Velocity Matching

Convergence rate of velocity matching (Ding-Duan-Jiao-Li-Yang-Zhang)

Under Assumptions **A1** and **A2**. Let $T \in (1/2, 1)$. Set the hypothesis class \mathcal{B} as

$$\mathcal{B} = \left\{ \begin{array}{l} \|\mathbf{b}(t, \mathbf{x})\|_\infty \leq B_{\text{vel}} \log^{1/2} n, \\ \mathbf{b} \in N(L, S) : \|\partial_t \mathbf{b}(t, \mathbf{x})\|_2 \leq 3D \sup_{t \in [0, T]} \left(\frac{\dot{\alpha}_t^2}{\alpha_t^2} + \frac{|\ddot{\alpha}_t|}{\alpha_t} \right) \log^{1/2} n, \\ \|\nabla \mathbf{b}(t, \mathbf{x})\|_{\text{op}} \leq 3G, \quad (t, \mathbf{x}) \in [0, T] \times \mathbb{R}^d \end{array} \right\},$$

where the depth and the width of the neural network are given, respectively, as $L = C$ and $S = Cn^{\frac{d+1}{d+3}}$. Then

$$\mathbb{E}[\mathcal{E}_T(\mathbf{b})] \lesssim \sup_{t \in [0, T]} \left(\frac{\dot{\alpha}_t^2}{\alpha_t^2} + \frac{|\ddot{\alpha}_t|}{\alpha_t} \right)^2 n^{-\frac{2}{d+3}} \log^2 n.$$

Convergence rate of characteristic learning (Ding-Duan-Jiao-Li-Yang-Zhang)

Under Assumptions **A1** and **A2**. Consider the linear interpolant $\alpha_t = 1 - t$ and $\beta_t = t$.

- ▶ Set the stopping time T as $T = 1 - Cn^{-\frac{1}{3(d+3)}} \log^{\frac{1}{2}} n$.
- ▶ The number of iterations of Euler sampling satisfies $K \geq Cn^{\frac{1}{d+3}}$.
- ▶ The depth $L_{\mathcal{B}}$ and the number of non-zero parameters $S_{\mathcal{B}}$ of the velocity network class \mathcal{B} are set, respectively, as $L_{\mathcal{B}} = C$ and $S_{\mathcal{B}} = Cn^{\frac{(d+1)(3d+7)}{3(d+3)^2}}$.
- ▶ The depth $L_{\mathcal{G}}$ and the number of non-zero parameters $S_{\mathcal{G}}$ of the characteristic network class \mathcal{G} are set, respectively, as $L_{\mathcal{G}} = C$ and $S_{\mathcal{G}} = Cm^{\frac{d+2}{d+4}}$.

Then the time-average squared 2-Wasserstein error can be bounded as:

$$\begin{aligned} & \mathbb{E} \left[\frac{2}{T^2} \int_0^T \int_t^T W_2^2((\hat{\mathbf{g}}_{t,s})_{\sharp} \mu_t, \mu_s) ds dt \right] \\ & \lesssim n^{-\frac{2}{3(d+3)}} \log^2 n + m^{-\frac{2}{d+4}} \log^2 m + \frac{\max\{\log n, \log m\}}{K}. \end{aligned}$$

Mitigate the Curse of Dimensionality

- ▶ **A3.** There exists an unknown constant $\sigma > 0$ and $d^* \ll d$, such that

$$\mu_1 = N(\mathbf{0}, \sigma^2 \mathbf{I}_d) * (\mathbf{P}_{\sharp} \tilde{\nu}),$$

where $\mathbf{P} \in \mathbb{R}^{d \times d^*}$ is a matrix whose column vectors are orthonormal in \mathbb{R}^d , and $\tilde{\nu}$ is a distribution with $\text{supp}(\tilde{\nu}) \subseteq [0, 1]^{d^*}$.

Mitigate the Curse of Dimensionality

Low-dimensional decomposition

For each (t, s, \mathbf{x}) with $0 \leq t \leq s \leq 1$ and $\mathbf{x} \in \mathbb{R}^d$,

$$\begin{aligned}\mathbf{b}^*(t, \mathbf{x}) &\equiv \mathbf{P} \tilde{\mathbf{b}}^*(t, \mathbf{P}^\top \mathbf{x}) + \frac{\alpha_t \dot{\alpha}_t + \sigma^2 \beta_t \dot{\beta}_t}{\alpha_t^2 + \sigma^2 \beta_t^2} (\mathbf{I}_d - \mathbf{P} \mathbf{P}^\top) \mathbf{x}, \\ \mathbf{g}^*(t, s, \mathbf{x}) &\equiv \mathbf{P} \tilde{\mathbf{g}}^*(t, s, \mathbf{P}^\top \mathbf{x}) + \sqrt{\frac{\alpha_s^2 + \sigma^2 \beta_s^2}{\alpha_t^2 + \sigma^2 \beta_t^2}} (\mathbf{I}_d - \mathbf{P} \mathbf{P}^\top) \mathbf{x}.\end{aligned}$$

The vector field $\tilde{\mathbf{b}}^* : \mathbb{R} \times \mathbb{R}^{d^*} \rightarrow \mathbb{R}^{d^*}$ is defined as:

$$\tilde{\mathbf{b}}^*(t, \tilde{\mathbf{x}}) := \mathbb{E}[\dot{\alpha}_t \tilde{\mathbf{X}}_0 + \dot{\beta}_t \tilde{\mathbf{X}}_1 | \tilde{\mathbf{X}}_t = \tilde{\mathbf{x}}], \quad \tilde{\mathbf{x}} \in \mathbb{R}^{d^*},$$

where $\tilde{\mathbf{X}}_0 \sim N(\mathbf{0}, \mathbf{I}_{d^*})$ and $\tilde{\mathbf{X}}_1 \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_{d^*}) * \tilde{\nu}$ are independent, and $\tilde{\mathbf{X}}_t := \alpha_t \tilde{\mathbf{X}}_0 + \beta_t \tilde{\mathbf{X}}_1$. Further, the vector field $\tilde{\mathbf{g}}^* : \mathbb{R} \times \mathbb{R} \times \mathbb{R}^{d^*} \rightarrow \mathbb{R}^{d^*}$ is defined as the flow map of $d\tilde{\mathbf{x}}(t) = \tilde{\mathbf{b}}^*(t, \tilde{\mathbf{x}}(t))dt$.

Convergence rate under manifold assumption (Ding-Duan-Jiao-Li-Yang-Zhang)

Under Assumptions **A1** and **A3**. Consider the linear interpolant $\alpha_t = 1 - t$ and $\beta_t = t$.

- ▶ Set the stopping time T as $T = 1 - Cn^{-\frac{1}{3(d^*+3)}} \log^{\frac{1}{2}} n$.
- ▶ The number of iterations of Euler sampling satisfies $K \geq Cn^{\frac{1}{d^*+3}}$.
- ▶ The depth $L_{\mathcal{B}}$ and the number of non-zero parameters $S_{\mathcal{B}}$ of the velocity network class \mathcal{B} are set, respectively, as $L_{\mathcal{B}} = C$ and $S_{\mathcal{B}} = Cn^{\frac{(d^*+1)(3d^*+7)}{3(d^*+3)^2}}$.
- ▶ The depth $L_{\mathcal{G}}$ and the number of non-zero parameters $S_{\mathcal{G}}$ of the characteristic network class \mathcal{G} are set, respectively, as $L_{\mathcal{G}} = C$ and $S_{\mathcal{G}} = Cm^{\frac{d^*+2}{d^*+4}}$.

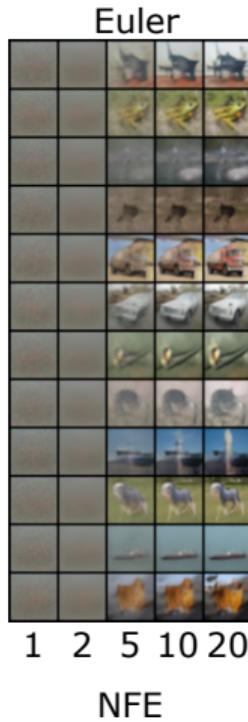
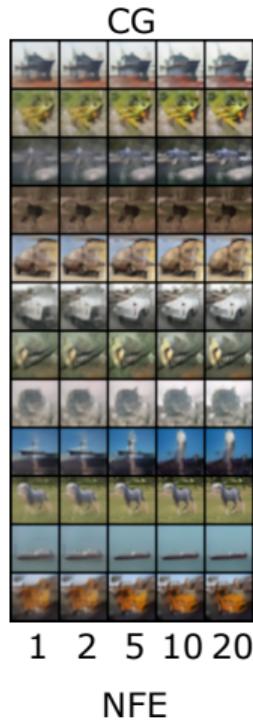
Then the time-average squared 2-Wasserstein error can be bounded as:

$$\begin{aligned} & \mathbb{E} \left[\frac{2}{T^2} \int_0^T \int_t^T W_2^2((\hat{\mathbf{g}}_{t,s})_{\sharp} \mu_t, \mu_s) ds dt \right] \\ & \lesssim n^{-\frac{2}{3(d^*+3)}} \log^2 n + m^{-\frac{2}{d^*+4}} \log^2 m + \frac{\max\{\log n, \log m\}}{K}. \end{aligned}$$

Outline

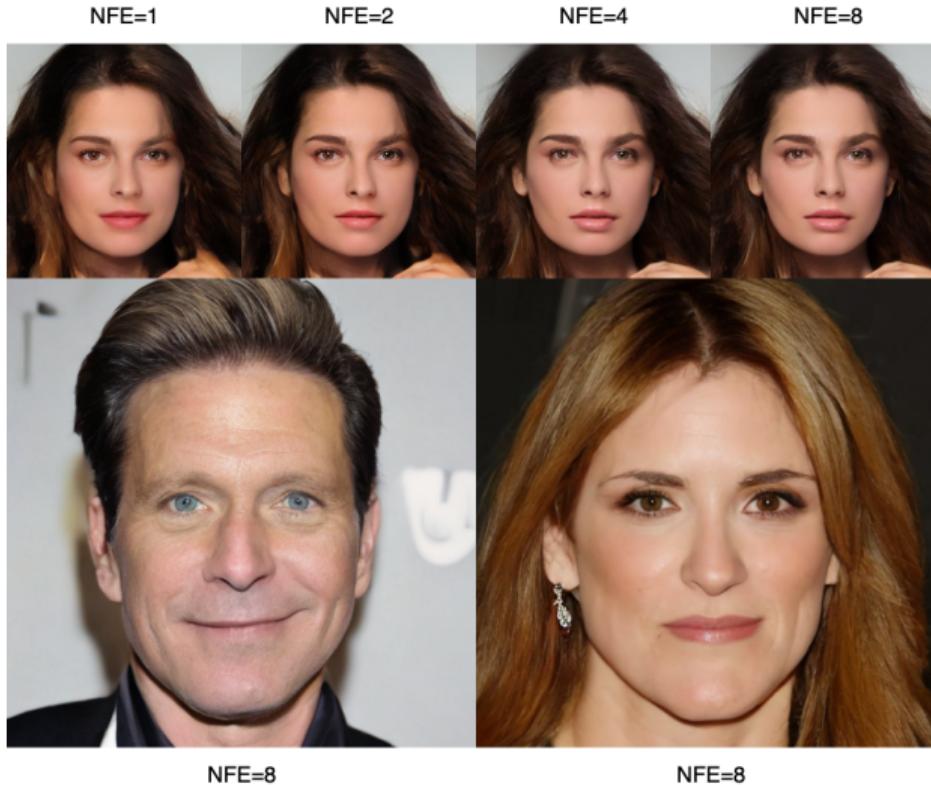
- ① Backgrounds of Flow-based Models
- ② Characteristic Learning
- ③ Error Analysis for Characteristic Learning
- ④ Numerical Experiments
- ⑤ Conclusions

Performance Comparisons on CIFAR-10



Model	NFE ↓	FID ↓
Diffusion + Sampler		
DDPM	1000	3.17
DDIM	100	4.16
Score SDE	2000	2.20
EDM	35	2.01
Diffusion + Distillation		
KD	1	9.36
DFNO	1	5.92
Rectified Flow	1	4.85
PD	1	9.12
CD	1	10.53
CTM (without GAN)	1	5.19
CG (ours)	1	4.59
PD	2	4.51
CTM (without GAN)	18	3.00
CG (ours)	2	3.50
CG (ours)	4	2.83

High-Resolution Images Generation



Conclusions

- ▶ End-to-end error analysis for flow-based generative models and distilled model.

[1] Zhao Ding, Chenguang Duan, Yuling Jiao, Ruoxuan Li, Jerry Zhijian Yang, and Pingwen Zhang. Characteristic Learning for Provable One Step Generation. [arXiv:2405.05512](https://arxiv.org/abs/2405.05512)