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Abstract. We propose the characteristic generator, a novel one-step generative model that

combines the efficiency of sampling in Generative Adversarial Networks (GANs) with the

stable performance of flow-based models. Our model is driven by characteristics, along which

the probability density transport can be described by ordinary differential equations (ODEs).

Specifically, We estimate the velocity field through nonparametric regression and utilize Euler

method to solve the probability flow ODE, generating a series of discrete approximations to the

characteristics. We then use a deep neural network to fit these characteristics, ensuring a one-

step mapping that effectively pushes the prior distribution towards the target distribution.

In the theoretical aspect, we analyze the errors in velocity matching, Euler discretization,

and characteristic fitting to establish a non-asymptotic convergence rate for the characteristic

generator in 2-Wasserstein distance. To the best of our knowledge, this is the first thorough

analysis for simulation-free one step generative models. Additionally, our analysis refines

the error analysis of flow-based generative models in prior works. We apply our method on

both synthetic and real datasets, and the results demonstrate that the characteristic generator

achieves high generation quality with just a single evaluation of neural network.

1. Introduction

Generative models aim to learn and sample from an underlying target distribution, finding

applications in diverse fields such as image and video generation (Radford et al., 2016, Meng

et al., 2022, Ho et al., 2022), text-to-image generation (Ramesh et al., 2021, 2022, Kang et al.,

2023), and speech synthesis (Kong et al., 2021, Chen et al., 2021). One of the most influential

and widely-used approaches is GAN (Goodfellow et al., 2014) and its variants (Arjovsky

et al., 2017). GANs offer the advantage of high sampling efficiency, as generating new

samples merely entails a single evaluation of the trained generator. Despite the remarkable

success in practical applications (Reed et al., 2016) and theoretical guarantee (Liang, 2021,

Liu et al., 2021, Huang et al., 2022, Zhou et al., 2023), GANs have intrinsic limitations in

terms of their stability (Salimans et al., 2016).

In recent years, diffusion models (Ho et al., 2020, Song et al., 2021b,c, Karras et al., 2022)

and flow-based models (Liu et al., 2022, Lipman et al., 2023) have emerged as powerful
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generative models. These models have also laid the foundation for the development of

generative AI models, such as DALL-E (Ramesh et al., 2021, 2022), Midjourney, Stable

Diffusion (Esser et al., 2024), and Sora (Brooks et al., 2024). Theoretical analysis for these

methods has been studied by Oko et al. (2023), Lee et al. (2022, 2023), Chen et al. (2023d,c),

Benton et al. (2024a,b), Gao and Zhu (2024), Wu et al. (2024). Although diffusion or flow-

based models outperform GANs in generation quality across various tasks (Dhariwal and

Nichol, 2021), they require hundreds or even thousands of sequential steps involving large

neural network evaluations for sampling. As a consequence, their sampling speed is much

slower compared to one-step GANs.

The instability of GANs and the inefficiency of sampling in diffusion or flow-based models

have emerged as significant bottlenecks in practical applications of generative models. This

raises two crucial questions:

Is it possible to develop a one-step generative model that combines the efficient sam-
pling of GANs with the stable performance of diffusion or flow-based models? If so,
can we establish a rigorous error analysis for this generative model?

Several recent papers have made progress in addressing the first question using vari-

ous techniques such as distillation (Luhman and Luhman, 2021, Salimans and Ho, 2022,

Song et al., 2023, Zhou et al., 2024), operator learning (Zheng et al., 2023a), or trajectory

models (Kim et al., 2024, Ren et al., 2024). For a more detailed discussion, please refer to

Section 5.1. Despite these recent advancements, a unifying mathematical framework for

designing and analyzing the one-step generative models remains largely limited (Li et al.,

2024b). This paper aims to fill this gap and provide a positive answer to the aforementioned

questions. Specifically, we introduce a comprehensive framework, known as the character-

istic generator, aiming to streamline the sampling process using a single evaluation of the

neural network. Our model merges the sampling efficiency of GANs with the promising

performance of flow-based models. Furthermore, we present a rigorous error analysis for

the characteristic generator. Through numerical experiments, we validate that our approach

generates high-quality samples that is comparable to those generated through flow-based

models, all while requiring just a single evaluation of characteristic generator.

1.1. Contributions. Our contributions are summarized as follows:

(i) We introduce a one-step generative model called the characteristic generator, which

efficiently pushes a Gaussian distribution to the target distribution without the need

for simulation. We present a probability density transport equation via stochastic

interpolants, resulting in probability flow ODEs along characteristics. The veloc-

ity field of the ODE is estimated through a least-squares regression. Subsequently,

we generate a sequence of discrete approximations to characteristics by numeri-

cally solving the ODE. Finally, we train the characteristic generator by fitting these

characteristics using a deep neural network.

(ii) We provide a rigorous error analysis for the characteristic generator. Specifically,

we derive a convergence rate O(n− 1
d+3 ) for velocity matching (Theorem 3.9), which
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improves the rates in previous works such as Chen et al. (2023b). Additionally, we

propose an error bound for the 2-Wasserstein distance between the data generated by

the Euler method and the target distribution (Theorem 3.11), which is of independent

interest. Lastly, we present a non-asymptotic convergence rate for the characteristic

generator in the 2-Wasserstein distance, demonstrating that it achieves a rate same to

that of Euler sampling (Theorem 3.13). To the best of our knowledge, this is the first

analysis conducted for one-step sampling of flow-based models, providing valuable

theoretical insights for distillation (Salimans and Ho, 2022, Song et al., 2023), operator

learning (Zheng et al., 2023a), or trajectory model (Kim et al., 2024, Ren et al., 2024).

(iii) We validate the generation quality and sampling efficiency of the characteristic gen-

erator using both synthetic and real data through numerical experiments. The

experiment results demonstrate that our method can generate samples of high qual-

ity from noise with just one neural network evaluation. In comparison to previous

one-step generative models without the aid of GANs (Salimans and Ho, 2022, Song

et al., 2023, Kim et al., 2024) , our characteristic generator significantly improves the

generation quality in CIFAR-10, as shown in Table 4. Furthermore, with only a few

iterations, our characteristic generator achieves comparable generation performance

to the state-of-the-art method (Kim et al., 2024, CTM), without the need for additional

GAN training as employed by CTM.

1.2. Main Results. Let µ1 ∈ Pac(Rd) be a target probability distribution with dµ1(x) =
ρ1(x) dx. In the context of generative learning, one only has access to data samples from

µ1 but have no access to the density function ρ1 itself. Let µ0 ∈ Pac(Rd) be a known

prior distribution. Suppose that there exists a smooth mapping G∗ : Rd → Rd
, which

pushes-forward the prior distribution µ0 onto the target distribution µ1, that is,

(1.1) G∗
♯µ0 = µ1.

The equation (1.1) is known as the normalizing equation (Rozen et al., 2021). The goal of the

generative learning, at least formally, is to find an estimator Ĝ of the push-forward operator

G∗
based on finite samples drawn from µ1.

In this work, we aim to construct the desired push-forward operator via a probability

flow ODE

dx(t) = b∗(t, x(t)) dt, x(0) = x0 ∼ µ0,

where the velocity field b∗
is given as (2.3). Denote by µt the distribution of x(t) for each

t ∈ (0, 1), and define the probability flow g∗
t,s as g∗

t,s(x(t)) = x(s) for each 0 ≤ t ≤ s < 1.

Let b̂ be the estimated velocity field obtained by velocity matching (2.8), and let Êτ
0,K be the

numerical approximation to the ODE solution by Euler method (2.9). Denote by ĝs,t be the

estimation of the flow g∗
t,s defined as (2.11), which is referred to the characteristic generator.

Our theoretical results are established under the following assumptions on the prior and

target distributions, which will be discussed in Section 3.1.

Assumption 1. The prior distribution µ0 = N(0, Id).
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Assumption 2. The target distribution µ1 = N(0, σ2Id) ∗ ν, where ν is a distribution with

supp(ν) ⊆ [0, 1]d.

Assumption 2 requires the target distribution to be smoothed by a Gaussian distribution.

This assumption is essential as it ensures desirable properties of the probability flow ODE,

such as bounded moments and the Lipschitz property of the velocity field. It is noteworthy

that this assumption can be considered relatively mild, given that the smoothed distribution

µ1 is an approximation of the original distribution ν, particularly when the variance σ2
of

the Gaussian distribution is small. Further details can be found in Sections 3.1 and 3.2.

Our first main result gives an error bound for the velocity matching.

Theorem 1.1 (Informal version of Theorem 3.9). Suppose that Assumptions 1 and 2 hold. Let
S be a set of n samples independently and identically drawn from the target distribution µ1. Then it
follows that

ES

[ 1
T

∫ T

0
EXt∼µt

[
∥b∗(t,Xt)− b̂(t,Xt)∥22

]
dt

]
≤ CTn

− 2
d+3 log2 n,

where CT is a constant depending on d, σ and T .

We then present the 2-Wasserstein bound for generated data by Euler method.

Theorem 1.2 (Informal version of Corollary 3.12). Suppose that Assumptions 1 and 2 hold. Let
S be a set of n samples independently and identically drawn from the target distribution µ1. By
setting a sufficiently large number of time steps K for Euler method, the following inequality holds

ES

[
W 2

2

(
(Êτ

0,K)♯µ0, µ1
)]
≤ C1

Tn
− 2

d+3 log2 n+ C2
TW

2
2

(
µ0, µ1

)
,

where C1
T and C2

T are two constants depending on d, σ and T . Further, as the stopping time T → 1,
the constant C1

T tends to infinity while C2
T decreases to zero.

The averaged 2-Wasserstein bound for characteristic generator is stated as follows.

Theorem 1.3 (Informal version of Theorem 3.13). Suppose that Assumptions 1 and 2 hold. Let
S be a set of n samples independently and identically drawn from the target distribution µ1, and let Z
be the set of numerical solutions by Euler method with a sufficiently large number. Then the following
inequality holds

ESEZ

[ 2
T 2

∫ T

0

∫ T

t
W 2

2

(
(ĝt,s)♯µt, µs

)
dsdt

]
≤ CTn

− 2
d+3 log2 n,

where C is a constant depending on d, σ and T .

As a consequence of Theorem 3.13, we propose in Table 1 the convergence rate of charac-

teristic generators induced by two special probability flow ODEs.

Table 1. Convergence rates of characteristic generator.

Probability flow ODE Convergence rate

Linear interpolants O(n− 2
3(d+3) ) Corollary 3.14

Föllmer flow O(n− 2
5(d+3) ) Corollary 3.15
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Experiment results and discussions can be found in Section 4. Our code is online available

at https://github.com/burning489/CharacteristicGenrator.

1.3. Preliminaries and Notations.

1.3.1. Wasserstein Distance. Let Pac(Rd) be the space of probability measures on Rd
, which

are absolutely continuous with respect to Lebesgue measure. Suppose µ0, µ1 ∈ Pac(Rd)
with dµ0(x) = ρ0(x) dx and dµ1(x) = ρ1(x) dx. The 2-Wasserstein distance (Villani, 2009,

Definition 6.1) between µ0 and µ1 is defined by the formula

(1.2) W2(µ0, µ1) = inf
{
E1/2[

∥X0 −X1∥22
]

: law(X0) = µ0, law(X1) = µ1
}
.

The 2-Wasserstein distance satisfies the symmetry axiom and the triangle inequality. Further,

the distance W2(µ0, µ1) is equal to zero if and only if µ0 = µ1.

1.3.2. Deep Neural Networks. A neural network f : RN0 → RNL+1
is a function defined by

f(x) = TL(ϱ(TL−1(· · · ϱ(T0(x)) · · · ))),

where the activation function ϱ is applied component-wisely and Tℓ(x) := Aℓx + bℓ is an

affine transformation with Aℓ ∈ RNℓ+1×Nℓ
and bℓ ∈ RNℓ

for ℓ = 0, . . . , L. In this paper, we

consider the case where NL+1 = d. The number L is called the depth of neural networks.

Additionally, S :=
∑L

ℓ=0(∥Aℓ∥0 + ∥bℓ∥0) represents the total number of non-zero weights

within the neural network.

We denote by N(L, S) the set of neural networks with depth at most L and the number

of non-zero weights at most S.

1.3.3. Notations. The set of positive integers is denoted by N = {1, 2, . . .}. We also denote

N0 = {0} ∪ N+ for convenience. For a vector x = (x1, . . . , xd) ∈ Rd
, we define its ℓp-

norms as ∥x∥pp =
∑d

i=1 |xi|p for 1 ≤ p < ∞, with ∥x∥∞ = max1≤i≤d |xi|. Denote by ⟨·, ·⟩
the inner product between vectors, that is, ⟨x, y⟩ =

∑d
k=1 xkyk, where y = (y1, . . . , yd).

For a matrix A ∈ Rm×n
, the operator norm induced by the ℓ2 vector norm is defined as

∥A∥op = sup∥x∥2=1 ∥Ax∥2. Additionally, denote by B∞
R the ℓ∞ ball in Rd

with radius R, that

is, B∞
R = {x ∈ Rd : ∥x∥∞ ≤ R}. For a matrix M , we say M ⪰ 0 if and only if it is positive

definite. Let A and B be two matrix, denote A ⪰ B if and only if (A − B) ⪰ 0. For a

function u(t) of time t, the time derivative is denoted by u̇ or ∂tu. Further, let ü denote the

second-order time derivative. Additionally, we use ∇ and ∇· to denote the spatial gradient

and divergence operators, respectively.

1.4. Organization. The remainder of this article is organized as follows. Section 2 intro-

duces the characteristic-driven generative learning method. A thorough analysis for this

method is provided in Section 3. Section 4 presents numerical studies and discussions. Sec-

tion 5 discusses related work and provides additional insights. Finally, Section 6 presents

the conclusion and discusses future work. The proof of theoretical results can be found in

the Appendix.

https://github.com/burning489/CharacteristicGenrator


6 DING, DUAN, JIAO, LI, YANG, AND ZHANG

2. Characteristic Generative Learning

Dating back to Moser (1965), Dacorogna and Moser (1990), researchers proposed a con-

tinuous dynamic-induced approach for solving the normalizing equation (1.1). In the

field of deep generative learning, flow-based models utilize ODE-dynamics to construct

probability flows, effectively pushing-forward the prior distribution towards the target dis-

tribution. This family of generative models is represented by continuous normalizing flows

(CNF) (Chen et al., 2018, Grathwohl et al., 2019) and their variants (Gao et al., 2019, Rozen

et al., 2021, Gao et al., 2022, Lipman et al., 2023, Neklyudov et al., 2023, Albergo and Vanden-

Eĳnden, 2023). The major challenges faced by flow-based models revolve around two key

questions:

Q1. During the training phase, how can we estimate the velocity field of the probability

flow ODE?

Q2. During the sampling phase, how can we solve the probability flow ODE efficiently?

The goal of this section is to propose the characteristic learning that has potential to ad-

dress the aforementioned questions. In Section 2.1, we derive a probability flow ODE based

on the concept of stochastic interpolants and the method of characteristics. Subsequently, in

Section 2.2, we propose a velocity matching approach using least-squares regression, which

provides an efficient solution to Q1. To tackle Q2, we first solve the probability flow ODE

numerically in Section 2.3. Then Section 2.4 introduces a regression problem to fit charac-

teristics using the obtained numerical solutions. This leads to an efficient simulation-free

sampling method for flow-based generative models. Additionally, the characteristic fitting

is improved by incorporating a semi-group penalty strategy. Finally, we summarizes the

training and sampling algorithms in Section 2.4.

2.1. Characteristics and Probability Flow ODE. In this work, we follow the framework of

stochastic interpolant (Albergo and Vanden-Eĳnden, 2023, Albergo et al., 2023b,a). Let X0

and X1 be two independent random variables drawn from µ0 and µ1, respectively. The

spatially linear stochastic interpolant Xt is the stochastic process defined as

(2.1) Xt = α(t)X0 + β(t)X1, t ∈ (0, 1),

where α(t) and β(t) are two scalar-valued functions satisfying the following condition.

Condition 1. The coefficient functions α(t), β(t) ∈ C([0, 1]) satisfy

(i) α(0) = β(1) = 1 and α(1) = β(0) = 0,

(ii) α2(t) + β2(t) > 0 for each t ∈ [0, 1],
(iii) α(t) and −β(t) are monotonically decreasing, and

(iv) α̇(t), α̈(t) ∈ C([0, 1)), α̇(t)α(t) ∈ C([0, 1]) and β̇(t), β̈(t) ∈ C([0, 1]).

In this paper, we focus on two examples shown in Table 2: linear interpolants and Föllmer

flow. Both of them are widely-used in generative learning, such as Nichol and Dhariwal

(2021), Liu et al. (2022), Albergo and Vanden-Eĳnden (2023), Albergo et al. (2023a), Lipman

et al. (2023), Chang et al. (2024).
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Table 2. Two examples of spatially linear interpolant.

α(t) β(t)
Linear interpolants (Liu et al., 2022, Lipman et al., 2023) 1− t t

Föllmer flow (Chang et al., 2024, Jiao et al., 2024)

√
1− t2 t

Denote by µt the distribution of the process Xt for each t ∈ (0, 1). The following proposi-

tion demonstrates that µt has a density ρt that interpolates between ρ0 and ρ1. Further, the

density ρt satisfies the continuous equation.

Proposition 2.1 (Transport equation). The distribution of the stochastic interpolant Xt has a
density function ρ(t, x) satisfies ρ(0, x) = ρ0(x), ρ(1, x) = ρ1(x), and

ρ(t, x) = 1
βt

∫
Rd
ρ0(x0)ρ1

(x− αtx0
βt

)
dx0 = 1

αt

∫
Rd
ρ0

(x− βtx1
αt

)
ρ1(x1) dx1,

for each time t ∈ (0, 1). Further, the density ρ(t, x) solves the linear transport equation

(2.2) ∂tρ(t, x) +∇ · (b∗(t, x)ρ(t, x)) = 0,

where the velocity field is defined as

(2.3) b∗(t, x) = E
[
α̇tX0 + β̇tX1

∣∣Xt = x
]
.

As our primary objective is to generate samples that obey to the target distribution, we

now consider the transport equation (2.2) from the lens of particles. It suffices to consider

characteristics (Courant and Hilbert., 1989, Section II.2), along which the transport equation

becomes an ODE

(2.4) dx(t) = b∗(t, x(t)) dt,

where x(t) is a characteristic, representing the position of particle at time t ∈ (0, 1), and b∗

is the associated velocity field that moves particles around. This characteristic ODE (Evans,

2010, Section 3.2) is known as the probability flow ODE (Song et al., 2021c). Further, the

associated two-parameter continuous normalizing flow

g∗
t,s : Rd → Rd, xt 7→ xs, 0 ≤ t ≤ s ≤ 1,

where xs = x(s) represents the solution of (2.4) at time s given x(t) = xt. Notice that the

flow g∗
t,s pushes-forward the distribution µt onto µs, that is,

(g∗
t,s)♯µt = µs, 0 ≤ t ≤ s < 1.

It is evident that the flow g∗
t,s satisfies the semi-group property as follows.

Proposition 2.2 (Semi-group property). For each x ∈ Rd, it holds that

(i) g∗
t,t(x)− x = 0 for each 0 ≤ t ≤ 1, and

(ii) g∗
t,s(x) = g∗

r,s ◦ g∗
t,r(x) for each 0 ≤ t ≤ r ≤ s ≤ 1.
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Observe that the flow g∗
satisfies the normalizing equation (1.1), and for each fixed xt,

{g(t, s, xt)}s≥t is a part of the characteristic. Consequently, the generative learning can

be reduced to the problem of estimate the characteristic g∗(t, s, x), which minimizes the

following quadratic risk

(2.5) R(g) = 2
T 2

∫ T

0

∫ T

t
EZ0∼µ0

[
∥Zs − g(t, s, Zt)∥22

]
dsdt,

where Zt = g∗
0,t(Z0), Zs = g∗

0,s(Z0) and T ∈ (1/2, 1) is a pre-specified stopping time.

Given that the distributions of Zt and Zs in (2.5) are unknown, it is necessary to estimate

them prior to minimizing (2.5). To achieve this, the velocity field is initially estimated in

Section 2.2, followed by the utilization of the Euler method to numerically solve the proba-

bility flow ODE in Section 2.3. The resulting numerical solutions provide approximations

of (Zt, Zs), which are then utilized to approximate the population risk (2.5) in Section 2.4.

2.2. Velocity Matching. According to (2.3), for each fixed stopping time T ∈ (1/2, 1), the

velocity field b∗
is the minimizer of following functional

(2.6) L(b) = 1
T

∫ T

0
E(X0,X1)

[
∥α̇(t)X0 + β̇(t)X1 − b(t,Xt)∥22

]
dt,

where Xt is the stochastic interpolant defined as (2.1).

Let {X(i)
0 }ni=1 and {X(i)

1 }ni=1 be two sets of independent copies of X0 ∼ µ0 and X1 ∼ µ1,

respectively. Additionally, let {t(i)}ni=1 be a set of n i.i.d. random variables drawn from the

uniform distribution on [0, T ]. Denote by S = {(t(i), X(i)
0 , X

(i)
1 )}ni=1. Then the empirical risk

associated with (2.6) is defined as

(2.7) L̂n(b) = 1
n

n∑
i=1
∥α̇(t(i))X(i)

0 + β̇(t(i))X(i)
1 − b(t(i), X

(i)
t )∥22,

where X
(i)
t = α(t(i))X(i)

0 + β(t(i))X(i)
1 . This induces the empirical risk minimizer

(2.8) b̂ ∈ arg min
b∈B

L̂n(b),

where B is a vector-valued deep neural network class. The detailed velocity matching

algorithm is shown in Algorithm 1. This approach for velocity matching is also used by

rectified flow (Liu et al., 2022) and flow matching (Lipman et al., 2023).

2.3. Euler Sampling. We turn to focus on sampling from the estimated probability flow

equation in this section. We replace the velocity b∗
in probability flow ODE (2.4) by its

estimated counterpart b̂ defined as (2.8), and employ the forward Euler method (Iserles,

2008, Butcher, 2016) to discretize this ODE. Denote by K ∈ N+ the total number of steps,

then the step size is given as τ = T/K. Define {tk = kτ}Kk=0 as the set of time points.

Applying forward Euler method deduces the following scheme:

(2.9) xk = xk−1 + τ b̂(tk−1, xk−1), 1 ≤ k ≤ K.
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Algorithm 1 Velocity matching.

Input: Observations {X(i)
1 }ni=1 ∼i.i.d. µ1.

1: Drawn {X(i)
0 }ni=1 ∼i.i.d. µ0 = N(0, Id).

2: Drawn {t(i)}ni=1 ∼i.i.d. Unif[0, T ].
3: Construct empirical interpolants via (2.1).

4: Initialize the deep neural network bθ : R ×Rd → Rd
.

5: repeat
6: Compute the empirical risk L̂n(bθ) in (2.7).

7: Compute the gradient∇θL̂n(bθ).
8: Gradient descent update θ ← θ − α∇θL̂n(bθ).
9: until converged

Output: An estimator b̂ = bθ of the velocity field.

Similar to the flow g∗
t,s associated with ODE (2.4), the flow induced by Euler method (2.9)

is defined as Êτ
k,ℓ : xk 7→ xℓ for each 0 ≤ k ≤ ℓ ≤ K. The following proposition demon-

strates that the Euler flow Êτ
k,ℓ inherits the semi-group property of continuous flow g∗

t,s in

Proposition 2.2.

Proposition 2.3 (Semi-group property). For each x ∈ Rd, it holds that

(i) Êτ
k,k(x)− x = 0 for each 0 ≤ k ≤ ℓ ≤ K, and

(ii) Êτ
k,ℓ(x) = Êτ

j,ℓ ◦ Êτ
k,j(x) for each 0 ≤ k ≤ j ≤ ℓ ≤ K.

It is true that the Euler flow Êτ
k,ℓ pushes-forward the distribution µkτ approximately

onto the distribution µℓτ for each 1 ≤ k ≤ ℓ ≤ K. Hence the Euler flow Êτ
k,ℓ is an

alternative approach for evaluating the flow g∗
t,s. However, it is important to note that

the Euler sampling incurs a substantial computational cost, as it necessitates a large number

of velocity network evaluations. This makes the Euler sampling encounter challenges in

time-sensitive application scenarios. Therefore, there is a pressing need to develop an

efficient simulation-free approach for evaluating the flow g∗
t,s.

2.4. Characteristic Fitting and Semi-Group Penalty. In order to estimate the flow g∗
t,s via a

simulation-free approach, we leverage a deep neural network to fit characteristics using data

samples obtained by Euler flow. Let Z = {Ẑ(i)
0 }mi=1 be a set of m random copies of Ẑ0 ∼ µ0.

Further, one obtainsm discrete characteristics {(Ẑ(i)
k )K

k=0}mi=1 by the Euler method (2.9) with

Ẑ
(i)
k = Êτ

0,k(Ẑ(i)
0 ). Then the empirical counterpart of (2.5) is defined as

(2.10)

R̂Euler
T,m,K(g) = 2

mK2

m∑
i=1

K−1∑
k=0

{
1
2∥Ẑ

(i)
k − g(tk, tk, Ẑ

(i)
k )∥22

+
K−1∑

ℓ=k+1
∥Ẑ(i)

ℓ − g(tk, tℓ, Ẑ
(i)
k )∥22

}
.
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The characteristic generator can be obtained by the empirical risk minimization

(2.11) ĝ ∈ arg min
g∈G

R̂Euler
T,m,K(g),

where G is a set of vector-valued deep neural networks. It is important to note that the

estimator ĝt,s serves as a neural network approximation for the flow g∗
t,s, eliminating the

need to simulate the ODE when evaluating ĝt,s. Therefore, the characteristic generator ĝt,s is

an efficient alternative to the Euler flow Êτ
k,ℓ in (2.9). Additionally, the idea of fitting charac-

teristics using deep neural network is also used by previous literature, such as DSNO (Zheng

et al., 2023a) and CTM (Kim et al., 2024).

Despite that both the continuous flow g∗
t,s and Euler flow Êτ

k,ℓ satisfy semi-group property

(Propositions 2.2 and 2.3), the characteristic generator ĝ defined as (2.11) does not satisfy the

semi-group property in general. In order to ensure the long-term stability of the estimator,

we introduce the semi-group constraint, which requires

∆kjℓ(g) = ∥gkτ,ℓτ (Ẑ(i)
k )− gjτ,ℓτ ◦ Êτ

k,j(Ẑ(i)
k )∥2

to be as small as possible for each 0 ≤ k ≤ j ≤ ℓ ≤ K. Consequently, we propose the

semi-group-penalized risk

(2.12) R̂Euler,λ
m,K (g) = R̂Euler

m,K (g) + λP̂(g),

where λ > 0 is the penalty parameter, and the semi-group-penalty is defined as

P̂(g) = 2
mK2

m∑
i=1

{
K−1∑
k=0

K−1∑
j=k+1

K−1∑
ℓ=j+1

∆2
kjℓ(g)

}
.

The complete training and sampling procedures of the characteristic generator is summa-

rized in Algorithms 2, 3 and 4.

As shown in Algorithm 3, in the sampling phase, one only needs to evaluate the charac-

teristic generator ĝ0,T once. As a consequence, our generator diminishes the sampling time

in comparison to Euler sampling. However, it necessitates a significant number of ODE

simulations during the training phase as Algorithm 2. Nevertheless, the benefits outweigh

the costs. In practical application scenarios, one can simulate ODE (2.9) and fit the prob-

ability flow (2.11) (Algorithm 2) on extensive and high-performance computing platforms.

Consequently, the derived estimators ĝ0,T can be deployed in computationally constrained

and time-sensitive application scenarios.

The characteristic generator is not restricted to one-step generation as Algorithm 3. On

the contrary, it can be employed iteratively to produce refined sampling algorithms, thereby

enhancing the quality of generation, albeit with a slight increase in computational cost.

Algorithm 4 presents the comprehensive procedure for achieving this fine-grained sampling.

3. Convergence Rates Analysis

In this section, we present a comprehensive convergence rate analysis for the characteristic

generator. We begin by illustrating Assumptions 1 and 2 in Section 3.1, and then establish

regularity properties of the probability flow ODE (2.4) in Section 3.2. In Section 3.3 and
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Algorithm 2 Training procedure of characteristic generator.

Input: Velocity estimator b̂.

1: # Euler sampling

2: for i = 1, . . . ,m do
3: Sample initial value Ẑ

(i)
0 ∼ µ0 = N(0, Id).

4: for k = 1, . . . ,K do
5: Ẑ

(i)
k ← Êτ

k−1,k(Ẑ(i)
k−1) by (2.9).

6: end for
7: end for
8: # Characteristic fitting

9: Initialize the neural network gϕ : R ×R ×Rd → Rd
.

10: repeat
11: Compute the empirical risk R̂m,K,n(gϕ) in (2.10) or (2.12).

12: Compute the gradient∇ϕR̂m,K,n(gϕ).
13: Gradient descent update ϕ← ϕ− α∇ϕR̂m,K,n(gϕ).
14: until converged

Output: Characteristic generator ĝt,s : Rd → Rd
for each 0 ≤ t ≤ s < T .

Algorithm 3 One-step sampling of characteristic generator.

Input: Characteristic generator ĝt,s : Rd → Rd
for each 0 ≤ t ≤ s < T .

1: Sample initial value Ẑ0 ∼ µ0 = N(0, Id).
2: ẐT ← ĝ0,T (Ẑ0).

Output: Generated samples ẐT .

Algorithm 4 Fine-grained sampling of characteristic generator.

Input: Characteristic generator ĝt,s : Rd → Rd
for each 0 ≤ t ≤ s < T .

1: Sample initial value Ẑ0 ∼ µ0 = N(0, Id).
2: Choose a sequence of time points 0 = t0 < . . . < tK = T .

3: for k = 1, . . . ,K do
4: ẐT ← ĝtk−1,tk

(Ẑk−1).
5: end for

Output: Generated samples ẐT .

Section 3.4, we propose a non-asymptotic error analysis for velocity matching and Euler

sampling, respectively. In Section 3.5, a convergence rate analysis for the characteristic

generator is established. Finally, in Section 3.6, we apply the aforementioned analysis to two

widely-used types of probability flow ODE: linear interpolant and Föllmer flow.

3.1. Discussions of Assumptions. Assumption 1 is standard and commonly-used in flow-

based generative models (Liu et al., 2022, Lipman et al., 2023, Albergo and Vanden-Eĳnden,

2023). The following proposition demonstrates that the velocity field b∗(t, x) is a spatial linear
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combination of x and the score function s∗(t, x) = ∇ log ρt(x). This connection suggests that

stochastic interpolants that satisfy Assumption 1 are closely related to diffusion models (Ho

et al., 2020, Song et al., 2021c).

Proposition 3.1 (Velocity and score). Suppose Assumption 1 holds. Then the following equality
holds:

b∗(t, x) = β̇t

βt
x+ α2

t

( β̇t

βt
− α̇t

αt

)
s∗(t, x), (t, x) ∈ (0, 1)×Rd.

Assumption 2 necessitates that the target distribution be a mixture of a Gaussian dis-

tribution and a distribution of compact support. Previous research (Lee et al., 2023, Oko

et al., 2023, Chen et al., 2023a,d) has investigated the assumption of compact support in the

target distribution. However, the probability flow that pushes a Gaussian prior distribution

towards a target distribution with compact support may lack regularity because the velocity

field is not generally Lipschitz. Therefore, it becomes crucial to impose additional intractable

regularity properties on the probability flow ODE. In contrast, the probability flow towards

a distribution of compact support with Gaussian smoothing exhibits high regularity even

without any additional assumptions. The regularity properties of the probability flow ODE

are established in Section 3.2. Furthermore, Assumption 2 covers a wide range of target

distributions. In essence, our generative model has the capability to learn arbitrarily com-

plex distributions with compact supports after Gaussian smoothing. This guarantees the

application of our model to a variety of generative problems.

3.2. Properties of Probability Flow ODE. In this section, we present elementary properties

of the probability flow ODE (2.4). To begin with, the following proposition shows that the

velocity fields is local bounded.

Proposition 3.2 (Local bounded velocity). Suppose Assumptions 1 and 2 hold. Let T ∈ (1/2, 1)
and R ∈ (1,+∞). Then it follows that

max
1≤k≤d

|b∗
k(t, x)| ≤ BvelR, (t, x) ∈ (0, 1)× B∞

R ,

where the constant Bvel only depends on d and σ.

With the aid of Proposition 3.2, we show that the probability flow and its time derivatives

are also local bounded.

Corollary 3.3 (Local bounded flow). Suppose Assumptions 1 and 2 hold. Let T ∈ (1/2, 1) and
R ∈ (1,+∞). Then it follows that

max
1≤k≤d

|g∗
k(t, s, x)| ≤ BflowR, 0 ≤ t ≤ s ≤ T, x ∈ B∞

R ,

where the constant Bflow only depends on d and σ.

Corollary 3.4 (Local bounded time derivatives of flow). Suppose Assumptions 1 and 2 hold.
Let T ∈ (1/2, 1) and R ∈ (1,+∞). Then it follows that

max
{
∥∂tg

∗(t, s, x)∥2, ∥∂sg
∗(t, s, x)∥2

}
≤ BvelR, 0 ≤ t ≤ s ≤ T, x ∈ B∞

R .
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Further, the spatial gradient of the velocity field is uniformly bounded in spectral norm,

as demonstrated by the next proposition.

Proposition 3.5 (Bounded spatial gradient of velocity). Suppose Assumptions 1 and 2 hold.
Then there exists a constant G <∞ such that

∥∇b∗(t, x)∥op ≤ G, (t, x) ∈ (0, 1)×Rd,

where the constant G only depends on d and σ.

A direct consequence of this proposition is that, under Assumptions 1 and 2, the velocity

field is uniformly Lipschitz continuous with respect to the spatial variable, as shown by the

following corollary.

Corollary 3.6 (Lipschitz continuity). Suppose Assumptions 1 and 2 hold. Then

∥b∗(t, x)− b∗(t, x′)∥2 ≤ G∥x− x′∥2, (t, x, x′) ∈ (0, 1)×Rd ×Rd.

The uniform Lipschitz continuity of the velocity field or score plays a crucial role in con-

trolling the error accumulation along the ODE or Euler method, as detailed in Corollary 3.10

and Theorem 3.11. Previous studies have often made the direct assumption of Lipschitz

continuity for the velocity field or score at each time t ∈ (0, 1) (Chen et al., 2023d,a,c,b, Ben-

ton et al., 2024b, Gao and Zhu, 2024). However, this assumption appears to be restrictive, as

it is difficult to verify. On the contrary, Assumptions 1 and 2 are easily satisfied and cover a

large amount of generative tasks.

Another important consequence of Proposition 3.5 is shown as follows.

Corollary 3.7 (Bounded spatial gradient of flow). Suppose Assumptions 1 and 2 hold. Then

∥∇g∗(t, s, x)∥op ≤ exp(G(s− t)), 0 ≤ t ≤ s ≤ T, x ∈ B∞
R .

Finally, we state the bound of time derivative of the velocity in the following proposition.

Proposition 3.8 (Bounded time derivative of velocity). Suppose Assumptions 1 and 2 hold. Let
T ∈ (1/2, 1) and R ∈ (1,+∞). Then it follows that

∥∂tb
∗(t, x)∥2 ≤ Dκ(T )R := D sup

t∈[0,T ]

( α̇2
t

α2
t

+ |α̈t|
αt

)
R, (t, x) ∈ [0, T ]× B∞

R ,

where the constant D only depends on d and σ.

Proposition 3.8 establishes the Lipschitz continuity of the velocity in time, a crucial re-

quirement for controlling the discretization error of the Euler method. For detailed illustra-

tions, refer to Theorem 3.11. In contrast, previous work (Gao and Zhu, 2024, Assumption 2)

simply assumes the Lipschitz continuity of the score in time.
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3.3. Analysis for Velocity Matching. In this section, we focus on the time-averagedL2
-error

of the velocity estimator b̂ in (2.8), that is,

(3.1) ET (b̂) = 1
T

∫ T

0
EXt∼µt

[
∥b∗(t,Xt)− b̂(t,Xt)∥22

]
dt.

The majority of existing literature on theoretical analysis of diffusion and flow-based gener-

ative models commonly assumes that the L2
-risk of score or velocity matching is sufficiently

small (Lee et al., 2022, 2023, Chen et al., 2023d,c, Benton et al., 2024a,b, Gao and Zhu, 2024).

However, this line of research lacks the ability to quantitatively characterize the conver-

gence rate of velocity matching with respect to the number of samples. Additionally, no

prior theoretical guidance for the selection of neural networks is provided in this literature.

To the best of our knowledge, only a limited number of studies have specifically focused on

investigating the convergence rates of score matching (Oko et al., 2023, Chen et al., 2023b,

Han et al., 2024) and velocity matching (Chang et al., 2024, Gao et al., 2024, Jiao et al., 2024).

In this work, we aim to establish a non-asymptotic error bound for the L2
-risk of the

estimated velocity. The main result is stated as follows.

Theorem 3.9 (Convergence rate for velocity matching). Suppose Assumptions 1 and 2 hold. Let
T ∈ (1/2, 1). Set the hypothesis class B as a deep neural network class, which is defined as

B =

b ∈ N(L, S) :

∥b(t, x)∥∞ ≤ Bvel log1/2 n,

∥∂tb(t, x)∥2 ≤ 3Dκ(T ) log1/2 n,

∥∇b(t, x)∥op ≤ 3G, (t, x) ∈ [0, T ]×Rd

 ,

where the depth and the width of the neural network are given, respectively, as L = C and S =
Cκ

2(d+1)
d+3 (T )n

d+1
d+3 . Then the following inequality holds

ES

[
ET (b̂)

]
≤ Cκ2(T )n− 2

d+3 log2 n,

where C is a constant only depending on d and σ.

The rate of velocity matching in Theorem 3.9 is consistent with the minimax optimal rate

O(n− 2
d+3 ) in nonparametric regression (Stone, 1982, Yang and Barron, 1999, Gyorfi et al.,

2002, Tsybakov, 2009) given that the target function is Lipschitz continuous. Moreover, our

theoretical findings align with convergence rates of nonparametric regression using deep

neural networks (Bauer and Kohler, 2019, Nakada and Imaizumi, 2020, Schmidt-Hieber,

2020, Kohler and Langer, 2021, Farrell et al., 2021, Kohler et al., 2022, Jiao et al., 2023a). It is

noteworthy that our results improve upon the rateO(n− 2
d+5 ) derived by Chen et al. (2023b),

Chang et al. (2024).

In Theorem 3.9, the hypothesis class B is set as a deep neural network class with Lipschitz

constraints. The assumption of uniformly Lipschitz continuity of velocity estimator plays

a crucial role in controlling the discretization error induced by Euler method. For further

details, refer to Theorem 3.11. This assumption is standard in the theoretical analysis

for flow-based or diffusion models, as considered by Kwon et al. (2022, Assumption A2)

and Chen et al. (2023c, Assumption 3). In practical applications, various techniques for
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restricting the Lipschitz constant of deep neural networks have been proposed, such as

weight clipping (Arjovsky et al., 2017), gradient penalty (Gulrajani et al., 2017), spectral

normalization (Miyato et al., 2018), and Lipschitz network (Zhang et al., 2022). In the

theoretical perspective, the approximation properties of deep neural network with Lipschitz

constraint has been studied by Chen et al. (2022), Huang et al. (2022), Jiao et al. (2023b), Ding

et al. (2024). In this work, an approximation error bound for deep neural networks with

Lipschitz constraint is established in Section H.

Besides the error of velocity matching itself, one is actually interested in the error of

profitability flow with estimated velocity, for which

(3.2) dx̂(t) = b̂(t, x̂(t)) dt.

Denote by µ̂T the push-forward distribution of µ0 by ODE (3.2) at time T . The following

corollary characteristic the 2-Wasserstein distance between µT and µ̂T .

Corollary 3.10. Under the same conditions as Theorem 3.9. The 2-Wasserstein between the proba-
bility flow (2.8) and the estimated flow (3.2) at the stopping time T is bounded as follows:

ES

[
W 2

2 (µ̂T , µT )
]
≤ Cκ2(T )n− 2

d+3 log2(n),

where the constant C only depends on d and σ.

Corollary 3.10 highlights that the 2-Wasserstein error of the estimated flow converges to

zero at a rate ofO(n− 2
d+3 ), omitting some logarithmic factors. In contrast, the 2-Wasserstein

error bounds derived by Benton et al. (2024b, Theorem 1) and Albergo and Vanden-Eĳnden

(2023, Proposition 3) are under a “black-box” assumption that the velocity matching error is

sufficiently small. Therefore, these results can not capture how the error converges to zero

as the number of samples increases.

3.4. Analysis for Euler Sampling. The main objective of this section is to estimate the 2-

Wasserstein error of the Euler flow (2.9). Despite that there has been numerous studies

on the sampling error of SDE-based diffusion models (Lee et al., 2022, 2023, Chen et al.,

2023d, Benton et al., 2024a), as well as flow-based methods (Chen et al., 2023c, Gao and

Zhu, 2024, Li et al., 2024c,a), most of these works assume that the velocity matching error

is sufficiently small. Furthermore, there is limited work that integrates the sampling error

with the velocity matching error (Chang et al., 2024, Gao et al., 2024, Jiao et al., 2024). To

address this gap, we propose the following theorem.

Theorem 3.11 (Error analysis for Euler flow). Under the same conditions as Theorem 3.9. Let the
number of time steps for Euler method K be a positive integer. Then the following inequality holds

ES

[
W 2

2

(
(Êτ

0,K)♯µ0, µT

)]
≤ Cκ2(T )

{
n− 2

d+3 log2 n+ 1
K2 logn

}
,

where the constant C only depends on d and σ. Further, if K ≥ Cn
1

d+3 , then it follows that

ES

[
W 2

2

(
(Êτ

0,K)♯µ0, µT

)]
≤ Cκ2(T )n− 2

d+3 log2 n.
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The error bound of the Euler flow (2.9), as derived in Theorem 3.11, can be roughly divided

into two main components. The first term arises from velocity matching, aligning with the

error bound presented in Corollary 3.10. The second term corresponds to the discretization

error introduced by Euler method. Moreover, as the number of time steps K increases, the

error bound in Theorem 3.11 converges to that in Corollary 3.10.

Based on Theorem 3.11, we can derive a 2-Wasserstein error bound between the target

distribution and the push-forward distribution of µ0 by Euler flow Êτ
0,K as follows.

Corollary 3.12. Under the same conditions as Theorem 3.11. Suppose the number of time steps for
Euler method K satisfies K ≥ Cn

1
d+3 . Then the following inequality holds

ES

[
W 2

2

(
(Êτ

0,K)♯µ0, µ1
)]
≤ Cκ2(T )n− 2

d+3 log2(n) + 2 max{α2
T , (1− βT )2}W 2

2 (µ0, µ1),

where the constant C only depends on d and σ.

Corollary 3.12 presents a bound for the total error of flow-based generative models. The

first term in the error bound corresponds to the 2-Wasserstein error of the Euler flow, as

derived in Theorem 3.11. The second term captures the convergence of the interpolant

distribution µT to the target distribution µ1. It is worth noting that as the stopping time

T approaches one, the first term tends to infinity, while the second term simultaneously

decreases. This trade-off within the error bound highlights the importance of carefully

selecting the stopping time T and provides practical guidance for determining it in real-

world applications.

3.5. Analysis for Characteristic Generator. Despite the empirical success of simulation-free

one-step approaches for the efficient sampling of flow-based generative models (Salimans

and Ho, 2022, Song et al., 2023, Zheng et al., 2023a, Kim et al., 2024, Ren et al., 2024),

the theoretical analysis for these line of methods still remains unclear. In this section, we

establish a thorough analysis for the characteristic generator. To the best of our knowledge,

this is the first analysis for one-step sampling method.

To measure the error of the characteristic generator, we focus on the time-average squared

2-Wasserstein distance between the distribution associated to the characteristic generator ĝ

and the target distribution

(3.3) D(ĝ) = 2
T 2

∫ T

0

∫ T

t
W 2

2

(
(ĝt,s)♯µt, µs

)
dsdt.

The main result is stated as follows.

Theorem 3.13 (Error analysis for characteristic generator). Under the same conditions as The-
orem 3.11. Further, set the hypothesis class G as a deep neural network class, which is defined
as

G =

g ∈ N(L, S) :

∥g(t, s, x)∥∞ ≤ Bflow log1/2m,

∥∂tg(t, s, x)∥2, ∥∂sg(t, s, x)∥2 ≤ 3Bvel log1/2m,

∥∇g(t, s, x)∥op ≤ 3 exp(GT ), 0 ≤ t ≤ s ≤ T, x ∈ Rd

 ,
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where the depth and the width of the neural network are given, respectively, asL = C andS = Cm
d+2
d+4 .

Then it follows that

ESEZ

[
D(ĝ)

]
≤ Cκ2(T )n− 2

d+3 log2 n+ Cm− 2
d+4 log2m+ C

( logm
K

+ logn
K2

)
,

where the constant C only depends on d and σ. Furthermore, if the number of time steps K for Euler
method and the number of samples m for characteristic fitting satisfy

(3.4) K ≥ max
{
Cn

1
d+3 , Cκ−2(T )n− 2

d+3
}

and m ≥ Cκ−(d+4)(T )n
d+4
d+3 ,

respectively, then the following inequality holds

ESEZ

[
D(ĝ)

]
≤ Cκ2(T )n− 2

d+3 log2 n.

In contrast to the error bound of Euler sampling in Theorem 3.11, the error bound of the

characteristic generator in Theorem 3.13 incorporates an additional error term O(m− 2
d+4 ).

This error term corresponds to the error of the standard nonparametric regression for

characteristic fitting, attaining the minimax optimality (Stone, 1982, Yang and Barron, 1999,

Gyorfi et al., 2002, Tsybakov, 2009) given that g∗
is Lipschitz continuous.

It is noteworthy that the number of samples m for characteristic fitting can be arbitrarily

large because training samples can be generated from copies of Z0 ∼ µ0 using Euler sam-

pling (2.9). Without loss of generality, we consider the case where m≫ n. In this scenario,

the error bound in Theorem 3.13 aligns with the convergence rate in Theorem 3.11.

In the context of distillation, Euler flow (2.9) is commonly referred as the “teacher” model.

Theorem 3.13 guarantees that, when the number of teacher samples is sufficiently large, the

characteristic generator can generate new samples that are as good as those generated by

the teacher model. However, the theorem also highlights that the teacher model serves as

a bottleneck for the characteristic generator, as it cannot surpass the generative quality of

the teacher model. These theoretical findings align with empirical observations reported

in prior studies (Salimans and Ho, 2022, Song et al., 2023, Kim et al., 2024). One potential

approach to overcome this bottleneck is by combining these one-step generative models

with GANs, as demonstrated by Lu et al. (2023b), Kim et al. (2024).

3.6. Applications. In this section, the theoretical analysis is applied to two types of flow-

based method in Table 2: linear interpolant and Föllmer flow. The convergence rates of

them are shown in Corollaries 3.14 and 3.15, respectively.

Corollary 3.14 (Convergence rate of linear interpolant). Under the same conditions as Theo-
rem 3.13. Set the stopping time T as

T = 1− Cn− 1
3(d+3) log

1
2 n.

Suppose the number of time step K satisfies K ≥ Cn
1

d+3 . Then it follows that

ES

[
W 2

2

(
(Êτ

0,K)♯µ0, µ1
)]
≤ Cn− 2

3(d+3) logn.
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Further, suppose the number of time step K and number of samples m satisfies (3.4). Then the
following inequality holds

ESEZ

[
D(ĝ)

]
≤ Cn− 2

3(d+3) logn,

where the constant C is independent of n.

Corollary 3.15 (Convergence rate of Föllmer flow). Under the same conditions as Theorem 3.13.
Set the stopping time T as

T = 1− Cn− 2
5(d+3) log

3
5 n.

Suppose the number of time step K satisfies K ≥ Cn
1

d+3 . Then it follows that

ES

[
W 2

2

(
(Êτ

0,K)♯µ0, µ1
)]
≤ CCn− 2

5(d+3) log
3
5 n.

Further, suppose the number of time step K and number of samples m satisfies (3.4), respectively.
Then the following inequality holds

ESEZ

[
D(ĝ)

]
≤ Cn− 2

5(d+3) log
3
5 n,

where the constant C is independent of n.

4. Numerical Studies

In this section, we delve into the numerical performance of characteristic learning. To

begin with, we introduce several technical improvements in Section 4.1. Subsequently, the

experimental results and discussions are presented in Section 4.2.

4.1. Technical improvements. In this section several technical enhancements to the algo-

rithms in Section 2 are introduced. Empirical evidence indicates that these methods exhibit

superior numerical performance. It is noteworthy that improved algorithms in this sec-

tion are mathematically equivalent to the previous ones in Section 2. Consequently, these

improvements remain within the established mathematical framework and theoretical anal-

ysis. Specifically, in Section 4.1.1, we adopt a denoiser matching algorithm as a replacement

for the velocity matching in Section 2.2. Additionally, in Section 4.1.2, we replace Euler

method with the technique of exponential integrator. Finally, the modified characteristic

learning algorithm is summarized in Section 4.1.3.

4.1.1. Denoiser matching. To begin with, we define the denoiser denoiser D∗
as

D∗(t, x) = E
[
X1

∣∣Xt = x
]
, (t, x) ∈ (0, 1)×Rd,

which recovers X1 from noised observation Xt = αtX0 + βtX1. It is apparent that D∗

minimizes the following functional for each T ∈ (0, 1),

(4.1) L(D) = 1
T

∫ T

0
E

[
∥X1 −D(t,Xt)∥22

]
dt.

An estimator D̂ of the denoiser D∗
can be obtained by the empirical risk minimization

similar to (2.8) using data set S = {(t(i), X(i)
0 , X

(i)
1 )}ni=1. In the context of distillation for

diffusion models, the denoiser network D̂ is referred as the “teacher” network.
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By an argument similar to Proposition 3.1, the velocity field is a spatial linear combination

of x and denoiser D∗(t, x), that is,

(4.2) b∗(t, x) = α̇t

αt
x+ βt

( β̇t

βt
− α̇t

αt

)
D∗(t, x).

Thus the denoiser matching is equivalent to estimating the velocity field, but the former

has better numerical stability (Karras et al., 2022, Kim et al., 2024). Furthermore, the semi-

linear form (4.2) enable us to use the exponential integrator, which is more stable than Euler

method. See Section 4.1.2 for detailed discussions.

4.1.2. Exponential integrator. With the aid of the denoiser estimator D̂, the estimated proba-

bility flow (3.2) is replaced by

(4.3)

dx̂(t)
dt = α̇t

αt
x̂(t) + βt

( β̇t

βt
− α̇t

αt

)
D̂(t, x̂(t)), t ∈ (0, 1).

Observe that the solution of the semi-linear ODE (4.3) can be exactly formulated by the

“variation of constants” formula as

(4.4) x̂(s) = Φ(t, s)x̂(t) +
∫ s

t
ψ(τ, s)D̂(τ, x̂(τ)) dτ,

where Φ(t, s) and ψ(t, s) are defined as

Φ(t, s) = exp
( ∫ s

t

α̇τ

ατ
dτ

)
, ψ(t, s) = Φ(t, s)βt

( β̇t

βt
− α̇t

αt

)
, 0 ≤ t ≤ s ≤ T.

By a similar argument to Euler method (2.9), we replace D̂(τ, x̂(τ)) in (4.4) by D̂(t, x̂(t))
and implies an explicit scheme

(4.5) x̂(s) ≈ Φ(t, s)x̂(t) + Ψ(t, s)D̂(t, x̂(t)), 0 ≤ t ≤ s ≤ T.

where Ψ(t, s) is a integral defined as

Ψ(t, s) =
∫ s

t
Φ(τ, s)βτ

( β̇τ

βτ
− α̇τ

ατ

)
dτ.

Notice that the integrals Φ and Ψ can be computed analytically given the interpolant co-

efficients αt and βt. The integral scheme (4.5) is commonly referred to as the first-order

exponential integrator (Hochbruck and Ostermann, 2010), which has been utilized in sam-

pling of diffusion models by Zhang and Chen (2023), Lu et al. (2022, 2023a), Zheng et al.

(2023b). We display the generated images and corresponding FID using exponential inte-

grator (4.5) in Figure 1.

In practice, we find the first-order exponential integrator outperforms other methods,

such as Euler and Heun methods. Nevertheless, it is important to note that this integral

scheme remains a first-order method, akin to the Euler method, and does not improve the

convergence rate of the discretization error. Consequently, our analysis encompasses this

integral scheme as well.
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NFE=20 NFE=20

Figure 1. Samples generated by probability flow ODE with exponential integrator.

4.1.3. Characteristic fitting. In Section 2.4, we directly parameterize the probability flow by

a deep neural network. However, in practice training such a neural network is unstable.

In this section we present some technical tricks to get a more stable training algorithm

by exploiting as much of the structure of the problem as possible without changing its

mathematical nature.

Recall the explicit formulation (4.4) of the solution

x(s) = Φ(t, s)x(t) + Ψ(t, s)
∫ s

t ψ(τ, s)D∗(τ, x(τ)) dτ∫ s
t ψ(τ, s) dτ ,

where the fraction in the second term can be viewed as a weighted average of D∗(τ, x(τ))
on [s, t]. Our main idea is to approximate this term using a deep neural network DS , which

is referred to the student model. Then the probability flow is parameterized by

(4.6) g(t, s, x) = Φ(t, s)x+ Ψ(t, s)DS(t, s, x), 0 ≤ t ≤ s ≤ T.

Since the exact denoiser D∗
is unknown, the student network DS can only be trained from

the denoiser estimator D̂. Therefore, D̂ is referred to the teacher model and denoted by

DT = D̂ thereafter.

We next design the objective functional for the student model DS to utilize as much of

the structure of the problem as possible. First, it is apparent that

lim
s→t+

∫ s
t ψ(τ, s)D∗(τ, x(τ)) dτ∫ s

t ψ(τ, s) dτ = D∗(t, x(t)).

This allows us to reuse the denoiser matching objective functional (4.1) as the local risk to

ensure the local consistency of the student model

(4.7) Rloc(DS) =
∫ T

0
E

[
∥X1 −DS(t, t,Xt)∥22

]
dt.

On the other hand, the outputs of generator (4.6) are required to align with the numerical

solutions (4.5) and satisfy the semi-group properties, as discussed in Section 2.4. This
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implies the following global risk

(4.8) Rglo(DS) =
∫ T

0

∫ T

t

∫ T

s
E

[
∥goff

s,T ◦ gu,s ◦ gint
t,u(Xt)− goff

s,T ◦ goff
t,s (Xt)∥22

]
dudsdt,

where g is induced by the student model DS defined as (4.6), gint
denotes the exponential

integrator given by teacher model DT , and goff
denotes an offline copy of g for training

stability. The population risk (4.8) can be considered as a variant of the original objective

functional (2.12), ensuring the long-range consistency of the generator. Combining the

short-range denoiser matching risk (4.7) and the long-range characteristic fitting risk (4.8)

yields the final training procedure for the characteristic generator. We conclude the practical

characteristic learning algorithm in Algorithm 5. The one-step sampling procedure is the

same as that in Algorithm 2. For better sampling quality, one can divide the time interval

into pieces as Algorithm 4.

Algorithm 5 Practical training procedure of characteristic generator.

Input: Observations X1 ∼ µ1, and pre-trained denoiser DT .

1: Initialize the student neural network DS,ϕ : R ×R ×Rd → Rd
.

2: Choose the loss parameter λ.

3: repeat
4: # Short-range denoiser matching

5: Drawn X0 ∼ µ0 = N(0, Id) and t ∼ Unif[0, T ].
6: Construct stochastic interpolant Xt = αtX0 + βtX1.

7: R̂loc(DS,ϕ)← ∥DS,ϕ(t, t,Xt)−X0∥22.

8: # Long-range characteristic matching

9: Drawn s ∼ Unif[t, T ] and u ∼ Unif[s, T ].
10: R̂glo(DS,ϕ)← ∥goff

s,T ◦ gu,s ◦ gint
t,u(Xt)− goff

s,T ◦ goff
t,s (Xt)∥22.

11: # Combined objective functional

12: Compute the gradient∇ϕ{λR̂loc(DS,ϕ) + R̂glo(DS,ϕ)}.
13: Gradient descent update ϕ← ϕ− α∇ϕ{λR̂loc(DS,ϕ) + R̂glo(DS,ϕ)}.
14: until converged

Output: Characteristic generator ĝ(t, s, x) = Φ(t, s)x+ Ψ(t, s)DS,ϕ(t, s, x).

Remark 4.1 (Comparison with CTM (Kim et al., 2024)). Kim et al. (2024) proposed a similar

method, but our approach differs from the CTM in two significant aspects. First, the integral

scheme gint
employed by CTM is Euler-based. While Euler method coincides with the first-

order exponential integrator for VE-ODE (Song et al., 2021c), its numerical stability cannot be

guaranteed for general probability flow ODEs. In contrast, the exponential integrator used

in our method may ease potential training instability as it fully exploits the semi-linearity

of the ODE system. Secondly, CTM relies on GAN training in their approach, borrowing

a pre-trained discriminator and treating g as the generator. This reliance on GAN training

may cause potential training instability and require extra training of the discriminator. Our

method, however, does not require this additional GAN training burden.
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4.2. Experiment results and discussions. In this section, we validate the generation quality

and sampling efficiency of the characteristic generator using both synthetic and real data

through numerical experiments. Föllmer flow is token as the underlying ODE, and all

results can be generalized to arbitrary probability flow ODE without loss of generality. We

use the Fréchet inception distance (FID) to measure sampling quality on image data. Lower

FID means better performance.

4.2.1. Synthetic 2-dimensional dataset. On a 2-dimensional dataset where the target distribu-

tion shapes like a Swiss roll, the characteristic generator trained by Algorithm 2 works well.

We display the original dataset and samples generated by Euler method (NFE=100) and the

characteristic generator (NFE=1) in Figure 2.

target ODE-Euler CG

Figure 2. Original Swiss roll samples and samples generated by ODE model

with Euler method (ODE-Euler) and the characteristic generator (CG).

From Figure 2, it can be observed that the generative quality of the one-step characteristic

generator closely resembles that of Euler method with 100 function evaluations (NFE).

This indicates that the original training procedure (Algorithm 2) can yield commendable

generation outcomes when dealing with relatively simple target distribution.

4.2.2. Real dataset. In this section, we apply the characteristic generator to two real dataset:

MNIST and CIFAR-10. The characteristic generators are trained by Algorithm 5.

Generated images by the characteristic generator are displayed in Figure 3 (MNIST on top

and CIFAR-10 on bottom). The experimental results illustrate that one-step generation has

high generation quality, which can be significantly improved by iterating the characteristic

generator by a few steps.

We compare the images generated by the numerical sampler and characteristic generator

with different numbers of function evaluations (NFE) in Figure 4. The numerical sampler

fails to accurately generate images at small NFE values such as 1 and 2. In fact, with 1 NFE,

the solution is actually close to the mean of the target distribution. It is necessary to have five

or more NFE for the numerical ODE solvers to work properly. In contrast, the characteristic

generator is capable of generating high-quality images even with only 1 NFE.

Furthermore, we compare the convergence of FID by NFE for the characteristic generator

in Table 3. It is evident that the characteristic generator converges faster than the numerical

sampler and achieves better scores at smaller NFE values.
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NFE=1 NFE=20NFE=5

Figure 3. Samples generated by the characteristic generator on CIFAR-10.

1 2 5 10 20

NFE

1 2 5 10 20

NFE

1 2 5 10 20

NFE

1 2 5 10 20

NFE

ODE-EI ODE-EICG CG

Figure 4. Comparison of samples generated by ODE with exponential inte-

grator (ODE-EI) and characteristic generators (CG) under different NFE on

MNIST and CIFAR-10.

Table 3. Comparison of FID by NFE between the exponential integrator (EI)

and characteristic generator (CG) in MNIST and CIFAR-10.

Dataset Method NFE=1 NFE=2 NFE=5 NFE=10 NFE=20

MNIST ODE-EI 46.55 46.71 2.69 0.66 0.28

MNIST CG 1.97 1.15 0.28 0.20 0.13

CIFAR-10 ODE-EI 14.06 15.42 5.38 3.16 2.50

CIFAR-10 CG 4.59 3.50 2.90 2.76 2.63

4.2.3. Comparison with other generative models. Table 4 presents the FID on CIFAR-10 achieved

by various generative models. Our characteristic generator demonstrates superior gener-

ation quality compared to models without GAN, regardless of whether it is one-step or
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few-step generation. Notably, our proposed method achieves a comparable FID to the

state-of-the-art method CTM (Kim et al., 2024), without the requirement of additional GAN

training as employed by CTM. Moreover, our proposed characteristic generator with NFE=4

achieves similar or even superior generation performance compared to GAN models.

Table 4. Performance comparisons on CIFAR-10.

Model NFE ↓ FID ↓

GAN Models
BigGAN (Brock et al., 2019) 1 8.51

StyleGAN-Ada (Karras et al., 2019) 1 2.92

Diffusion + Sampler
DDPM (Ho et al., 2020) 1000 3.17

DDIM (Song et al., 2021a) 100 4.16

Score SDE (Song et al., 2021c) 2000 2.20

EDM (Karras et al., 2022) 35 2.01

Diffusion + Distillation
KD (Luhman and Luhman, 2021) 1 9.36

DFNO (Zheng et al., 2023a) 1 5.92

Rectified Flow (Liu, 2022) 1 4.85

PD (Salimans and Ho, 2022) 1 9.12

CD (Song et al. (2023), retrained by Kim et al. (2024)) 1 10.53

CTM (without GAN) (Kim et al., 2024, Table 3) 1 5.19

CG (ours) 1 4.59

PD (Salimans and Ho, 2022) 2 4.51

CTM (without GAN) (Kim et al., 2024, Table 3) 18 3.00

CG (ours) 2 3.50
CG (ours) 4 2.83

Diffusion + Distillation + GAN
CD (with GAN) (Lu et al., 2023b) 1 2.65

CTM (with GAN) (Kim et al., 2024) 1 1.98

CTM (with GAN) (Kim et al., 2024) 2 1.87

5. Related Works

5.1. Fast sampling method for diffusion and flow-based models. Diffusion and flow-based

models have demonstrated impressive generative performance across various applications.

However, their iterative sampling process requires a substantial number of evaluations of

the score or velocity neural network, which currently limits their real-time application. In

recent years, there has been a surge of fast sampling methods aimed at accelerating the

sampling process of diffusion or flow-based models.
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The sampling process of the diffusion or flow-based model can be considered as numeri-

cally solving SDE or ODE. Therefore, one approach to address this issue is to develop accel-

eration algorithms for these equations (Zhang and Chen, 2023, Lu et al., 2022, 2023a, Zheng

et al., 2023b, Gao and Zhu, 2024, Li et al., 2024a). For instance, Lu et al. (2022) effectively

utilizes the semi-linear structure of the probability flow ODE by employing an exponential

integrator. Furthermore, this algorithm incorporates adaptive step size schedules and high-

order approximations. While these strategies can achieve high-quality generation requiring

10-15 neural network evaluations, generating samples in a single step still poses a significant

challenge.

There is another line of recent works that aim to propose a simulation-free one-step

sampling method. It is important to note that SDE has probabilistic trajectories, while

the trajectory of ODE is deterministic, which is known as “self-consistency” (Song et al.,

2023). This line of work is referred to the distillation, which can be divided into two distinct

categories.

In the first category, researchers aim to train a deep neural network that maps noise to the

endpoint of the probability flow ODE, while disregarding the information at intermediate

time points. This class of methods includes knowledge distillation (KD) (Luhman and

Luhman, 2021), Euler particle transport (EPT) (Gao et al., 2022), rectified flow (Liu et al.,

2022), and diffusion model sampling with neural operator (DSNO) (Zheng et al., 2023a).

Unfortunately, these methods are hindered by training instability and low generation quality,

as they solely focus on long-range information and are unable to capture the short-range

structure at intermediate time points.

The second category of distillation, which is highly relevant to our work, aims to fit the

characteristics at each time point using deep neural networks, as demonstrated by Salimans

and Ho (2022), Song et al. (2023), Kim et al. (2024), Zhou et al. (2024). These methods

take into account both the long-range and short-range structures of the original probability

flow, resulting in a high quality of one-step generation. Furthermore, these models exhibit

the potential for further enhancement through a few-step iteration process. However, de-

spite their impressive generation quality and training stability, these methods have not yet

undergone rigorous theoretical analysis. In contrast, our paper presents a comprehensive

framework for generative models utilizing characteristic matching and establishes a rigorous

convergence analysis, providing theoretical guarantees for these methods. Additionally, we

incorporate the exponential integrator into the characteristic matching procedure. Notably,

our characteristic generator surpasses the generation quality achieved by Salimans and Ho

(2022), Song et al. (2023), Kim et al. (2024) without the assistance of GANs.

5.2. Error analysis for diffusion and flow-based models. Although a large body of liter-

ature has been devoted to the theoretical analysis for diffusion and flow-based generative

models, a majority of these works rely on intractable assumptions, such as the regularity

of the probability flow SDEs or ODEs. In contrast, our theoretical findings are established
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under fewer and milder assumptions on the prior and target distribution (Assumptions 1

and 2).

The errors of diffusion-based and flow-based one-step generative models primarily focus

on three aspects: velocity matching error, discretization error, and characteristic fitting error.

Existing literature on theoretical analysis of these generative models commonly assumes that

theL2
-risk of score or velocity matching is sufficiently small (Lee et al., 2022, 2023, Chen et al.,

2023d,c, Benton et al., 2024a,b). However, only a limited number of studies have specifically

investigated the convergence rates of score matching (Oko et al., 2023, Chen et al., 2023b,

Han et al., 2024) and velocity matching (Chang et al., 2024, Gao et al., 2024, Jiao et al., 2024).

The convergence rate of the velocity, as derived in Theorem 3.9, achieves minimax optimality

under the assumption of Lipschitz continuity of the target function, which improves upon

the rates proposed by Chen et al. (2023b), Chang et al. (2024). The discretization error of

the numerical sampler has been explored for both diffusion models (Lee et al., 2022, 2023,

Chen et al., 2023d, Benton et al., 2024a), and flow-based methods (Chen et al., 2023c, Gao

and Zhu, 2024, Li et al., 2024c,a). To the best of our knowledge, Theorem 3.13 is the first

to systematically analyze these three errors, providing theoretical guidance for selecting

suitable neural networks and determining the number of numerical discretization steps.

6. Conclusions

In this paper, we propose the characteristic generator, a novel one-step generative model

that combines sampling efficiency with high generation quality. In terms of theoretical

analysis, we have examined the errors in velocity matching, Euler discretization, and char-

acteristic fitting, enabling us to establish a non-asymptotic convergence rate for the charac-

teristic generator in 2-Wasserstein distance. This analysis represents the first comprehensive

investigation into simulation-free one-step generative models, refining the error analysis of

flow-based generative models in prior research. We have validated the effectiveness of our

method through experiments on synthetic and real datasets. The results demonstrate that

the characteristic generator achieves high generation quality with just a single evaluation of

the neural network. This highlights the efficiency and stability of our model in generating

high-quality samples.

Finally, we would like to emphasize that our framework of one-step generation is highly

versatile and can be extended to conditional generative learning directly. By incorporat-

ing the encoder-decoder technique, our approach can be generalized to the latent space,

enabling its application in a wide range of practical scenarios, including video generation.

The characteristic generator improved by these techniques lays a technical foundation for

deploying large-scale generative models on end devices.

On the theoretical front, we intend to exploit the regularity of the velocity field in our

error analysis for velocity matching. This will allow us to achieve a faster convergence rate.

Additionally, we plan to analyze higher order and more stable numerical schemes, such as

the high-order exponential integrator, in order to provide a comprehensive understanding

of their effectiveness. Furthermore, we aim to establish a theoretical foundation for the
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role of semi-group penalties in the characteristic fitting. This will contribute to a deeper

understanding of their impact and significance in our framework.
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Appendix A. Supplemental Definitions and Lemmas

In this section, we introduce some supplemental definitions and lemmas that are used in

the proofs.

We first introduce sub-Gaussian random variable Vershynin (2018), Wainwright (2019).

Definition A.1 (Sub-Gaussian). A random variableX with mean µ = E[X] is sub-Gaussian

if there is a positive number σ such that

logE[exp(λ(X − µ))] ≤ σ2λ2

2 , λ ∈ R.

Here the constant σ is referred to as the variance proxy.

The following results (Lemmas A.2 to A.4) shows some important properties of sub-

Gaussian variables, whose proofs can be found in (Wainwright, 2019, Section 2.1).

Lemma A.2 (Chernoff bound). Let X be a σ2-sub-Gaussian random variable with zero mean.
Then it holds that

Pr
{
|X| ≥ t

}
≤ 2 exp

(
− t2

2σ2

)
.

Lemma A.3. Let X be a σ2-sub-Gaussian random variable with zero mean. Then it holds that

E
[

exp
(λX2

2σ2

)]
≤ 1√

1− λ
, λ ∈ [0, 1).

Lemma A.4. Let X0 be a σ2
0-sub-Gaussian, and let X1 be a σ2

1-sub-Gaussian independent of X0.
Then the randon variable αX0 + βX1 is sub-Gaussian with variance proxy α2σ2

0 + β2σ2
1 .

Lemmas A.5 and A.6 show bounds of the tail probability and the expectation of the

maximum of N sub-Gaussian variables.

https://proceedings.mlr.press/v202/zheng23d.html
https://proceedings.neurips.cc/paper_files/paper/2023/file/ada8de994b46571bdcd7eeff2d3f9cff-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/ada8de994b46571bdcd7eeff2d3f9cff-Paper-Conference.pdf
https://doi.org/10.1080/01621459.2021.2016424
https://doi.org/10.1080/01621459.2021.2016424


38 DING, DUAN, JIAO, LI, YANG, AND ZHANG

Lemma A.5. Let {Xn}Nn=1 be a set of σ2-sub-Gaussian random variables with zero mean, then it
follows that

Pr
{

max
1≤n≤N

|Xn| ≥ t
}
≤ 2N exp

(
− t2

2σ2

)
.

The following lemma states that the expectation of the maximum of the squares of N

sub-Gaussian variables is bounded by logN .

Lemma A.6. Let {Xn}Nn=1 be a set of σ2-sub-Gaussian random variables with zero mean, then it
follows that

E
[

max
1≤n≤N

X2
n

]
≤ 4σ2(logN + 1).

Proof of Lemma A.5. It is straightforward that

Pr
{

max
1≤n≤N

|Xn| ≥ t
}
≤

N∑
n=1

Pr
{
|Xn| ≥ t

}
≤ 2N exp

(
− t2

2σ2

)
,

where the last inequality holds from Lemma A.2. This completes the proof. □

Proof of Lemma A.6. By Jensen’s inequality, it is straightforward that

exp
( λ

2σ2E
[

max
1≤n≤N

ξ2
n

])
≤ E

[
max

1≤n≤N
exp

(λξ2
n

2σ2

)]
≤ NE

[
exp

(λξ2
1

2σ2

)]
≤ N√

1− λ
,

where the last inequality holds from Lemma A.3 for each λ ∈ [0, 1). Letting λ = 1/2 yields

the desired inequality. □

Lemma A.7 (Fourth moment of standard Gaussian). Let ϵ ∼ N(0, Id). ThenE[∥ϵ∥42] = d2+2d.

Proof of Lemma A.7. It is straightforward that

E[∥ϵ∥42] = E
[ d∑

k=1
ϵ4k +

∑
k ̸=ℓ

ϵ2kϵ
2
ℓ

]
=

d∑
k=1
E[ϵ4k] +

∑
k ̸=ℓ

E[ϵ2k]E[ϵ2ℓ ] = d2 + 2d,

where we used the fact that E[X4] = 3 for X ∼ N(0, 1). □

We next introduce the notation of covering number and Vapnik-Chervonenkis dimension

(VC-dimension), both of which measure the complexity of a function class Mohri et al.

(2018), Vaart and Wellner (2023). They are used in the error analysis for velocity matching

(Section D) and characteristic fitting (Section F).

Definition A.8 (Covering number). Let F be a class of functions mapping from Rd
to R.

Suppose D = {X(i)}ni=1 is a set of samples in Rd
. Define the L∞(D)-norm of the function

f ∈ F as ∥f∥L∞(D) = max1≤i≤n |f(X(i))|. A function set Fδ is called an L∞(D) δ-cover of

F if for each f ∈ F , there exits fδ ∈ Fδ such that ∥f − fδ∥L∞(D) ≤ δ. Furthermore,

N(δ,F , L∞(D)) = inf
{
|Fδ| : Fδ is a L∞(D) δ-cover of F

}
is called the L∞(D) δ-covering number of F .
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Definition A.9 (VC-dimension). Let F be a class of functions from Rd
to {±1}. For any

non-negative integer m, we define the growth function of F as

ΠF (m) = max
{X(i)}m

i=1⊆Rd

∣∣{(f(X(1)), . . . , f(X(m))) : f ∈ F}
∣∣.

A set {X(i)}mi=1 is said to be shattered by F when |{(f(X(1)), . . . , f(X(m))) : f ∈ F}| = 2m
.

The Vapnik-Chervonenkis dimension of F , denoted VCdim(F ), is the size of the largest set

that can be shattered by F , that is, VCdim(F ) = max{m : ΠF (m) = 2m}. For a class F of

real-valued functions, we define VCdim(F ) = VCdim(sign(F )).

Lemma A.10. Let F be a class of functions mapping from Rd to R, and let H be a function class
defined as H = {(x, f) 7→ h(f, x) ∈ R : f ∈ F}. Suppose D = {X(i)}ni=1 is a set of samples in
Rd. If there exists a constant L > 0 such that for each f, f ′ ∈ F ,

max
1≤i≤n

|h(f,X(i))− h(f ′, X(i))| ≤ L max
1≤i≤n

|f(X(i))− f ′(X(i))|,

then the following inequality holds for each δ > 0,

N(Lδ,H , L∞(D)) ≤ N(δ,F , L∞(D)).

Proof of Lemma A.10. Let Fδ be an L∞(D) δ-cover of F with |Fδ| = N(Lδ,H , L∞(D)).
Define Hδ = {(x, f) 7→ h(f, x) ∈ R : f ∈ Fδ}. Then for each h(f, ·) ∈ H , there exists

h(fδ, ·) ∈Hδ, such that

max
1≤i≤n

|h(f,X(i))− h(fδ, X
(i))| ≤ L max

1≤i≤n
|f(X(i))− fδ(X(i))| ≤ Lδ.

Thus Hδ is an L∞(D) (Lδ)-cover of H . This completes the proof. □

We then bound the covering number by VC-dimension as following lemma.

Lemma A.11 ((Anthony et al., 1999, Theorem 12.2)). Let F be a class of functions mapping from
Rd to [0, B]. Then it follows that for each n ≥ VCdim(F ),

sup
D∈(Rd)n

logN(δ,F , L∞(D)) ≤ VCdim(F ) log
( enB

δVCdim(F )
)
.

The following lemma provides a VC-dimension bound for neural network classes with

piecewise-polynomial activation functions.

Lemma A.12 ((Bartlett et al., 2019, Theorem 7)). The VC-dimension of a neural network class
with piecewise-polynomial activation functions is bounded as follows

VCdim(N(L, S)) ≤ CLS log(S),

where C is an absolute constant.
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Appendix B. Proof of Results in Section 2

The proof of Proposition 2.1 follows from the proof of (Albergo et al., 2023b, Theorem 2)

and (Albergo et al., 2023a, Theorem 2.6).

Proof of Proposition 2.1. The characteristic function of Xt (2.1) is given as

φXt(ξ) = EXt [exp(iξ ·Xt)]

=
∫
Rd×Rd

exp(iξ · (αtx0 + βtx1))ρ0(x0)ρ1(x1) dx0 dx1

=
∫
Rd

exp(iξ · (αtx0))ρ0(x0) dx0

∫
Rd

exp(iξ · (βtx1))ρ1(x1) dx1

= EX0 [exp(iαtξ ·X0)]EX1 [exp(iβtξ ·X1)] = φX0(αtξ)φX1(βtξ),

where ξ ∈ Rd
, and we used the fact that X0 is independent of X1. On the other hand,∫

Rd
exp(iξ · x)

( 1
βt

∫
Rd
ρ0(x0)ρ1

(x− αtx0
βt

)
dx0

)
dx

= 1
βt

∫
Rd×Rd

exp(iαtξ · x0) exp(iξ · (x− αtx0))ρ0(x0)ρ1
(x− αtx0

βt

)
dx0 dx

=
∫
Rd

exp(iαtξ · x0)ρ0(x0)
{ ∫
Rd

exp
(
iξ · (x− αtx0)

)
ρ1

(x− αtx0
βt

)
d

(x− αtx0
βt

)}
dx0

=
∫
Rd

exp(iαtξ · x0)ρ0(x0)
{ ∫
Rd

exp(iβtξ · x1)ρ1(x1) dx1
}

dx0 = φX0(αtξ)φX1(βtξ).

Combining the above two equality deduces that for each ξ ∈ Rd
,

φXt(ξ) =
∫
Rd

exp(iξ · x)
( 1
βt

∫
Rd
ρ0(x0)ρ1

(x− αtx0
βt

)
dx0

)
dx.

By using Fourier inversion theorem, we obtain the density function of Xt as

ρt(x) = 1
βt

∫
Rd
ρ0(x0)ρ1

(x− αtx0
βt

)
dx0.

By a same argument, we have

ρt(x) = 1
αt

∫
Rd
ρ0

(x− βtx1
αt

)
ρ1(x1) dx1.

We next turn to verify that the density function solves the transport equation. Let ϕ be an

arbitrary smooth testing function. By the definition of the interpolant (2.1), it holds that

EXt

[
ϕ(Xt)

]
= E(X0,X1)

[
ϕ(αtX0 + βtX1)

]
.

Taking derivative with respect to t on the left-hand side of the equality yields

(B.1)

∂

∂t

( ∫
Rd
ϕ(x)ρt(x) dx

)
=

∫
Rd
ϕ(x)∂tρt(x) dx.
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Similarly, for the right-hand side of the equality, we have

∂

∂t

( ∫
Rd×Rd

ϕ(αtx0 + βtx2)ρ0(x0)ρ1(x1) dx0 dx1
)

=
∫
Rd×Rd

(α̇tx0 + β̇tx1) · ∇ϕ(αtx0 + βtx1)ρ0(x0)ρ1(x1) dx0 dx1

=
∫
Rd
E[α̇tX0 + β̇tX1|Xt = x] · ∇ϕ(x)ρt(x) dx

=
∫
Rd
b∗

t (x) · ∇ϕ(x)ρt(x) dx = −
∫
Rd
ϕ(x)∇ · (b∗

t (x)ρt(x)) dx,(B.2)

where the first equality follows from the chain rule, the forth equality holds from the

definition of b∗
t (2.3), and the last equality is due to integration by parts and the divergence

theorem (Evans, 2010, Theorem 1 in Section C.2). Combining (B.1) and (B.2) gives the desired

transport equation. □

Appendix C. Properties of the Probability Flow ODE

In this section, we present some auxiliary properties of the probability flow ODE in

Section C.1. Proofs of the propositions in Section 3.2 are given in Section C.2.

C.1. Auxiliary Properties. Lemmas C.1 to C.4 are established under Assumption 1.

Lemma C.1. Suppose Assumption 1 holds. Then the conditional score function is given as

∇x log ρt|1(x|x1) = − 1
α2

t

x+ βt

α2
t

x1, t ∈ (0, 1).

Proof of Lemma C.1. GivenX1 = x1, using the definition of stochastic interpolant (2.1) implies

(Xt|X1 = x1) ∼ N(βtx1, α
2
t Id), t ∈ (0, 1),

which implies the desired result immediately. □

Lemma C.2. Suppose Assumption 1 holds. Then the following holds

E[X1|Xt = x] = 1
βt
x+ α2

t

βt
∇x log ρt(x).

Proof of Lemma C.2. It is straightforward that

∇x log ρt(x) = ∇xρt(x)
ρt(x) = 1

ρt(x)∇x

( ∫
Rd
ρt|1(x|x1)ρ1(x1) dx1

)
=

∫
Rd

ρt|1(x|x1)ρ1(x1)
ρt(x) ∇x log ρt|1(x|x1) dx1

=
∫
Rd
ρ1|t(x1|x)

(
− 1
α2

t

x+ βt

α2
t

x1
)

dx1

= − 1
α2

t

x+ βt

α2
t

E[X1|Xt = x],

where the we used the definition of conditional density and Lemma C.1. This completes

the proof. □
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Lemma C.3. Suppose Assumptions 1 holds. Then it follows that

∇b∗(t, x) = α̇t

αt
Id +

( β̇t

βt
− α̇t

αt

)β2
t

α2
t

Cov(X1|Xt = x).

Proof of Lemma C.3. According to the proof of Proposition 3.1, we have

b∗(t, x) = α̇t

αt
x+ βt

( β̇t

βt
− α̇t

αt

)
E[X1|Xt = x],

which deduces

(C.1) ∇b∗(t, x) = α̇t

αt
Id + βt

( β̇t

βt
− α̇t

αt

)
∇E[X1|Xt = x].

Hence it suffices to estimate the gradient of the conditional expectation. In fact,

∇xE[X1|Xt = x] = ∇x

( 1
ρt(x)

∫
Rd
x1ρt|1(x|x1)ρ1(x1) dx1

)
= −∇xρt(x)

ρ2
t (x)

∫
Rd
xT

1 ρt|1(x|x1)ρ1(x1) dx1 + 1
ρt(x)

∫
Rd
∇xρt|1(x|x1)xT

1 ρ1(x1) dx1

= −∇x log ρt(x)
∫
Rd
xT

1 ρ1|t(x1|x) dx1 +
∫
Rd
∇x log ρt|1(x|x1)xT

1 ρ1|t(x1|x) dx1,(C.2)

where we used the definition of the conditional density that

ρ1|t(x1|x) =
ρt|1(x|x1)ρ1(x1)

ρt(x) .

For the first term in the right-hand side of (C.2), applying Lemma C.2 implies

−∇x log ρt(x)
∫
Rd
xT

1 ρ1|t(x1|x) dx1

=
( 1
α2

t

x− βt

α2
t

E[X1|Xt = x]
)
E[X1|Xt = x]T .(C.3)

For the second term, it follows from Lemma C.1 that∫
Rd

log∇xρt|1(x|x1)xT
1 ρ1|t(x1|x) dx1

= − 1
α2

t

xE[X1|Xt = x]T + βt

α2
t

E[X1X
T
1 |Xt = x].(C.4)

Plugging (C.3) and (C.4) into (C.2) yields

(C.5) ∇E[X1|Xt = x] = βt

α2
t

Cov(X1|Xt = x).

Substituting (C.5) into (C.1) completes the proof. □

The following lemma gives an explicit expression of time derivative of the velocity.
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Lemma C.4 ((Gao et al., 2023, Proposition 63)). Suppose Assumption 1 holds. Then it follows
that for each (t, x) ∈ (0, 1)×Rd,

∂tb
∗(t, x) =

( α̈t

αt
− α̇2

t

α2
t

)
x+

(
α2

t

β̈t

βt
− α̇tαt

β̇t

βt
− α̈tαt + α̇2

t

) βt

α2
t

E[X1|Xt = x]

+ β2
t

α2
t

( β̇t

βt
− α̇t

αt

)( β̇t

βt
− 2 α̇t

αt

)
Cov(X1|Xt = x)x

− β3
t

α2
t

( β̇t

βt
− α̇t

αt

)2(
E[X1X

T
1 X1|Xt = x]− E[X1X

T
1 |Xt = x]E[X1|Xt = x]

)
.

Lemmas C.5 to C.8 are established under Assumptions 1 and 2.

Lemma C.5. Suppose Assumptions 1 and 2 hold. Then it follows that

(X1|Xt = x) d= α2
t

α2
t + σ2β2

t

Ux +
√

σ2α2
t

α2
t + σ2β2

t

ϵ+ σ2βt

α2
t + σ2β2

t

x,

where Ut,x is a random variable satisfying supp(Ut,x) = supp(ν), and ϵ ∼ N(0, Id).

Proof of Lemma C.5. According to the definition of stochastic interpolant (2.1), we have

(C.6) ρt|1(x|x1) = 1
(2π)d/2αd

t

exp
(
− 1
α2

t

∥βtx1 − x∥22
)
.

Using Assumption 2, the target distribution is given as

(C.7) ρ1(x1) = 1
(2π)d/2σd

∫
Rd

exp
(
− 1
σ2 ∥x1 − u∥22

)
dν(u).

Combining (C.6) and (C.7) implies

ρ1|t(x1|x) =
ρt|1(x|x1)ρ1(x1)

ρt(x)

= 1
(2πσαt)d

1
ρt(x)

∫
Rd

exp
(
− 1
α2

t

∥βtx1 − x∥22
)

exp
(
− 1
σ2 ∥x1 − u∥22

)
dν(u)

= 1
(2π)d/2

( σ2α2
t

α2
t + σ2β2

t

)d/2 ∫
Rd

exp
(
− α2

t + σ2β2
t

σ2α2
t

∥∥∥x1 −
σ2βtx+ α2

tu

α2
t + σ2β2

t

∥∥∥2

2

)
g(t, x, u) dν(u),

= N
(σ2βtx+ α2

tu

α2
t + σ2β2

t

,
σ2α2

t

α2
t + σ2β2

t

)
∗ νt,x(u),

where g(t, x, u) is a function such that

∫
ρ1|t(x1|x) dx1 = 1 for each (t, x) ∈ (0, 1)×Rd

, and the

measure νt,x is defined as dνt,x(u) = g(t, x, u) dν(u). It is apparent that supp(νt,x) = supp(ν).
Therefore,

(X1|Xt = x) d= α2
t

α2
t + σ2β2

t

Ut,x +
√

σ2α2
t

α2
t + σ2β2

t

ϵ+ σ2βt

α2
t + σ2β2

t

x,

where Ut,x ∼ νt,x and ϵ ∼ N(0, Id) are two independent random variables. This completes

the proof. □

Lemma C.6 (Conditional expectation). Suppose Assumptions 1 and 2 hold. Then the following
inequalities hold for each t ∈ (0, 1) and x ∈ Rd,

|E[X1,k|Xt = x]| ≤M(1 + |xk|), 1 ≤ k ≤ d,

where M is a constant only depending on d and σ.
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Proof of Lemma C.6. According to Lemma C.5, it holds that

E[X1|Xt = x] = α2
t

α2
t + σ2β2

t

E[Ut,x] + σ2βt

α2
t + σ2β2

t

x,

which implies the desired inequalities directly. □

Lemma C.7 (Conditional covariance). Suppose Assumptions 1 and 2 hold. Then the following
inequalities hold for each t ∈ (0, 1) and x ∈ Rd,

σ2α2
t

α2
t + σ2β2

t

Id ⪯ Cov(X1|Xt = x) ⪯ σ2α2
t

α2
t + σ2β2

t

Id + d
( α2

t

α2
t + σ2β2

t

)2
Id.

Proof of Lemma C.7. It is straightforward from Lemma C.5 that

E[X1|Xt = x] = α2
t

α2
t + σ2β2

t

E[Ut,x] + σ2βt

α2
t + σ2β2

t

x,

which implies

E[X1|Xt = x]E[X1|Xt = x]T

=
( α2

t

α2
t + σ2β2

t

)2
E[Ut,x]E[Ut,x]T + α2

t

α2
t + σ2β2

t

σ2βt

α2
t + σ2β2

t

E[Ut,x]xT +
( σ2βt

α2
t + σ2β2

t

)2
xxT .

On the other hand, using Lemma C.5 deduces

E[X1X
T
1 |Xt = x] = α2

t

α2
t + σ2β2

t

σ2βt

α2
t + σ2β2

t

E[Ut,x]xT +
( σ2βt

α2
t + σ2β2

t

)2
xxT

+
( α2

t

α2
t + σ2β2

t

)2
E[Ut,xU

T
t,x] + σ2α2

t

α2
t + σ2β2

t

Id.

Combining the above two equalities yields

Cov(X1|Xt = x) = E[X1X
T
1 |Xt = x]− E[X1|Xt = x]E[X1|Xt = x]T

=
( α2

t

α2
t + σ2β2

t

)2
Cov(Ut,x) + σ2α2

t

α2
t + σ2β2

t

Id.

According to Lemma C.5, the random variable ∥Ut,x∥∞ ≤ 1 and thus Cov(Ut,x) ⪯ dId.

Consequently,

σ2α2
t

α2
t + σ2β2

t

Id ⪯ Cov(X1|Xt = x) ⪯ σ2α2
t

α2
t + σ2β2

t

Id + d
( α2

t

α2
t + σ2β2

t

)2
Id,

for each (t, x) ∈ (0, 1)×Rd
. This completes the proof. □

By a same argument as Lemmas C.6 and C.7, we also have the following inequality.

See (Gao et al., 2024, Lemma A.8) for a detailed proof.

Lemma C.8. Suppose Assumptions 1 and 2 hold. Then the following inequalities hold for each
t ∈ (0, 1) and x ∈ Rd,

∥E[X1X
T
1 X1|Xt = x]− E[XT

1 X1|Xt = x]E[X1|Xt]∥2 ≤Mα2
t (1 + ∥x∥2),

where M is a constant only depending on d and σ.
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C.2. Proof of Results in Section 3.2. Then we show proofs of propositions and corollaries

in Section 3.2.

Proof of Proposition 3.1. Using the definition of velocity (2.3), we have

b∗(t, x) = E[α̇1X0 + β̇tX1|Xt = x] = E
[
β̇tX1 + α̇t

αt
(Xt − βtX1)

∣∣∣Xt = x
]

= βt

( β̇t

βt
− α̇t

αt

)
E[X1|Xt = x] + α̇t

αt
x = α2

t

( β̇t

βt
− α̇t

αt

)
∇x log ρt(x) + β̇t

βt
x,

where the second equality holds from the definition of stochastic interpolant (2.1), and the

last equality is due to Lemma C.2. This completes the proof. □

Proof of Proposition 3.2. Using the definition of velocity (2.3), we have

b∗(t, x) = E[α̇1X0 + β̇tX1|Xt = x] = E
[
β̇tX1 + α̇t

αt
(Xt − βtX1)

∣∣∣Xt = x
]

= βt

( β̇t

βt
− α̇t

αt

)
E[X1|Xt = x] + α̇t

αt
x

= βt

( β̇t

βt
− α̇t

αt

)( α2
t

α2
t + σ2β2

t

E[Ut,x] + σ2βt

α2
t + σ2β2

t

x
)

+ α̇t

αt
x

= αt(αtβ̇t − α̇tβt)
α2

t + σ2β2
t

E[Ut,x] + αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

x

where the second equality holds from the definition of stochastic interpolant (2.1), and the

fourth equality follows from Lemma C.6. This completes the proof. □

Proof of Corollary 3.3. For each 1 ≤ k ≤ d, it follows from (2.4) that

xk(s) = xk(t) +
∫ s

t
b∗

k(τ, x(τ)) dτ.

Using the triangular inequality and Jensen’s inequality, we have

|xk(s)| ≤ |xk(t)|+
∫ s

t
|b∗

k(τ, x(τ))| dτ

≤ |xk(t)|+
∫ s

t

∣∣∣ατ (ατ β̇τ − α̇τβτ )
α2

τ + σ2β2
τ

∣∣∣ dτ +
∫ s

t

∣∣∣αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

∣∣∣|xk(τ)| dτ,

where the second inequality follows from Lemma C.6, and M is a constant only depending

on d and σ. Applying Gronwall’s inequality (Evans, 2010, Section B.2) yields

|xk(s)| ≤ C exp
( ∫ s

t

∣∣∣αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

∣∣∣ dτ
)(
|xk(t)|+

∫ s

t

∣∣∣ατ (ατ β̇τ − α̇τβτ )
α2

τ + σ2β2
τ

∣∣∣ dτ
)
,

where the constant C depends only on d and σ. This completes the proof. □

Proof of Corollary 3.4. It follows from the definition of the probability flow g∗
(2.4) that

∂tg
∗(t, s, x) = −b∗(t, x) and ∂sg

∗(t, s, x) = b∗(s, x).

Then we obtain the desired result according to Proposition 3.2. □
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Proof of Proposition 3.5. It sufficient to show that

(C.8)

αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

Id ⪯ ∇b∗(t, x) ⪯
(αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

+ d
αtβt(αtβ̇t − α̇tβt)

(α2
t + σ2β2

t )2

)
Id.

For the upper bound, it follows from Lemma C.3 and Lemma C.7 that

∇b∗(t, x) ⪯ α̇t

αt
Id +

( β̇t

βt
− α̇t

αt

)β2
t

α2
t

( σ2α2
t

α2
t + σ2β2

t

Id + d
( α2

t

α2
t + σ2β2

t

)2
Id

)
=

(αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

+ d
αtβt(αtβ̇t − α̇tβt)

(α2
t + σ2β2

t )2

)
Id.(C.9)

By a similar argument, we have

(C.10) ∇b∗(t, x) ⪰ α̇t

αt
Id +

( β̇t

βt
− α̇t

αt

)β2
t

α2
t

σ2α2
t

α2
t + σ2β2

t

Id = αtα̇t + σ2βtβ̇t

α2
t + σ2β2

t

Id.

Combining (C.9) and (C.10) yields (C.8). This competes the proof. □

With the aid of above auxiliary lemmas, we provide the following proof of Corollary 3.6.

Proof of Corollary 3.6. We first show the Lipschitz continuity of the velocity. It is straightfor-

ward that for each t ∈ (0, 1) and x, x′ ∈ Rd
,

∥b∗(t, x)− b∗(t, x′)∥2 =
∥∥∥ ∫ 1

0

d
dτ b

∗(t, x′ + τ(x− x′)) dτ
∥∥∥

2

=
∥∥∥ ∫ 1

0
∇b∗(t, x′ + τ(x− x′)) dτ(x− x′)

∥∥∥
2

≤
∫ 1

0
∥∇b∗(t, x′ + τ(x− x′))∥op dτ∥x− x′∥2

≤
( ∫ 1

0
G dτ

)
∥x− x′∥2 = G∥x− x′∥2,(C.11)

where the first inequality follows from the definition of the operator norm ∥·∥op and Jensen’s

inequality, and the second inequality is due to Proposition 3.5. This shows the Lipschitz

continuity of the velocity.

We now turn to focus on the Lipschitz continuity of the flow. It suffices to show that the

solution at time s depends Lipschitz continuously on the solution xt at time t. Let x(·) and

x′(·) be two continuous vector-valued functions satisfy the ODE (2.4) with different values

at t. Then it follows that

d
dt(xk(t)− x′

k(t)) = b∗
k(t, x(t))− b∗

k(t, x′(t)), 1 ≤ k ≤ d.

By the definition of ℓ2-norm, we have

d
dt∥x(t)− x′(t)∥2 = 1

2∥x(t)− x′(t)∥2

d∑
k=1

d
dt(xk(t)− x′

k(t))2

= 1
∥x(t)− x′(t)∥2

d∑
k=1

(xk(t)− x′
k(t))(b∗

k(t, x(t))− b∗
k(t, x′(t)))

≤ ∥b∗(t, x(t))− b∗(t, x′(t))∥2 ≤ G∥x(t)− x′(t)∥2,
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where the first inequality follows from Cauchy-Schwarz inequality, and the second inequal-

ity is due to (C.11). Then applying Gronwall’s inequality (Evans, 2010, Section B.2) completes

the proof. □

Proof of Proposition 3.8. According to Lemma C.6, we find

(C.12) ∥E[X1|Xt = x]∥2 ≤M1R, (t, x) ∈ (0, 1)× B∞
R ,

where M2 is a constant only depending on d and σ. For the conditional covariance, using

Lemma C.7 implies

(C.13) ∥Cov(X1|Xt = x)∥op ≤M2α
2
t , (t, x) ∈ (0, 1)× B∞

R ,

whereM2 is a constant only depending on d and σ. In addition, applying Lemma C.8 yields

(C.14) ∥E[X1X
T
1 X1|Xt = x]− E[XT

1 X1|Xt = x]E[X1|Xt]∥2 ≤M3α
2
tR,

for each (t, x) ∈ (0, 1) × B∞
R . Substituting (C.12), (C.13) and (C.14) to Lemma C.4 achieves

the desired result. □

Appendix D. Proof of Results in Section 3.3

In the section, we present the proofs of Theorem 3.9 and Corollary 3.10.

D.1. Proof of Theorem 3.9. In this section, we prove Theorem 3.9. Specifically, we propose

the oracle inequality in Lemma D.1, which decomposes theL2
-risk into approximation error,

the generalization error, and the truncation error. Then we provide an approximation error

bound in Lemma D.2. By making a trade-off between three errors, we finally obtain the

convergence rate for the velocity estimator, which completes the proof Theorem 3.9.

Recall the weighted L2
-risk (3.1) of a measurable function b : R ×Rd → Rd

as

ET (b) = 1
T

∫ T

0
EXt∼µt

[
∥b(t,Xt)− b∗(t,Xt)∥22

]
dt,

and for the sake of notation simplicity, define the truncated L2
-risk with truncation param-

eter R > 1 as

ET,R(b) = 1
T

∫ T

0
EXt∼µt

[
∥b(t,Xt)− b∗(t,Xt)∥221{∥Xt∥∞ ≤ R}

]
dt.

Lemma D.1 (Oracle inequality for velocity estimation). Suppose that Assumptions 1 and 2 hold.
Let T ∈ (1/2, 1) and R ∈ (1,+∞). Further, assume that for each b ∈ B,

(D.1) max
1≤k≤d

|bk(t, x)| ≤ BvelR, (t, x) ∈ [0, T ]×Rd,

Then the following inequality holds for each n ≥ max1≤k≤d VCdim(ΠkB),

ES

[
ET (b̂)

]
≤ 2 inf

b∈B
ET,R(b) + Cλ(T )R2

(
max

1≤k≤d

VCdim(ΠkB)
n log−1(n)

+ 1
exp(θR2)

)
,

where the constant θ only depends on σ, the constant C only depends on d and σ, and the constant
λ(T ) is defined as λ(T ) = max{1, supt∈[0,T ] α̇

2
t }.
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Proof of Lemma D.1. Before proceeding, we introduce some notations, aiming to reformulate

the original velocity matching problem to a standard regression model.

Given a pair of random variables (X0, X1) sampled fromµ0×µ1, define a stochastic process

Yt = α̇tX0 + β̇tX1 for each t ∈ [0, T ]. Recall the stochastic interpolant Xt = αtX0 + βtX1.

We define the noise term as εt = Yt − b∗(t,Xt). Since b∗(t, x) = E[Yt

∣∣Xt = x], we have

E[εt|Xt = x] = 0 for each (t, x) ∈ [0, T ] ×Rd
. Therefore, in the rest of this proof, it suffices

to consider the following regression model:

(D.2) Yt = b∗(t,Xt) + εt, Xt ∼ µt, t ∼ Unif[0, T ].

Recall the data set S = {(t(i), X(i)
0 , X

(i)
1 )}ni=1. Then we define the data set corresponding

to the regression model (D.2) as {(t(i), X(i)
t , Y

(i)
t )}, for which

X
(i)
t = α(t(i))X(i)

0 + β(t(i))X(i)
1 and Y

(i)
t = α̇(t(i))X(i)

0 + β̇(t(i))X(i)
1 .

The noise terms {ε(i)
t }ni=1 can be defined by ε

(i)
t = Y

(i)
t − b∗(t(i), X(i)

t ) for each 1 ≤ i ≤ n.

We divide the proof into four steps.

Step 1. Sub-Gaussian noise.
In this step, we show that the noise term (εt|Xt = x) in (D.2) is sub-Gaussian for each

t ∈ [0, T ] and x ∈ Rd
, and aim to estimate its variance proxy. According to the definition of

stochastic interpolant Xt (2.1), we have

Yt = α̇tX0 + β̇tX1 = α̇t

αt
Xt + αtβ̇t − α̇tβt

αt
X1, t ∈ [0, T ],

which implies from Lemma C.5 that

(Yt|Xt = x) = (α̇tX0 + β̇tX1|Xt = x) = α̇t

αt
x+ αtβ̇t − α̇tβt

αt
(X1|Xt = x)

d= α̇t

αt
x+ αt(αtβ̇t − α̇tβt)

α2
t + σ2β2

t

Ut,x +

√
σ2(αtβ̇t − α̇tβt)2

α2
t + σ2β2

t

ϵ+ σ2βt(αtβ̇t − α̇tβt)
αt(α2

t + σ2β2
t )

x,

whereUt,x ∈ [0, 1]d and ϵ ∼ N(0, Id) are two independent variables. Then taking expectation

on both sides of the equality yields

E[Yt|Xt = x] = α̇t

αt
x+ αt(αtβ̇t − α̇tβt)

α2
t + σ2β2

t

E[Ut,x] + σ2βt(αtβ̇t − α̇tβt)
αt(α2

t + σ2β2
t )

x.

Therefore, by the definition of the noise term, the following equality holds

(εt|Xt = x) = (Yt|Xt = x)− E[Yt|Xt = x]

d= αt(αtβ̇t − α̇tβt)
α2

t + σ2β2
t

(Ut,x − E[Ut,x]) +

√
σ2(αtβ̇t − α̇tβt)2

α2
t + σ2β2

t

ϵ.

Since that the random variable Ut,x ∈ [0, 1]d, using Hoeffding’s lemma (Mohri et al., 2018,

Lemma D.1) implies that Ut,x is 1-sub-Gaussian. Further, applying Lemma A.4 deduces that

each element of (εt|Xt = x) is sub-Gaussian for each t ∈ [0, T ] and x ∈ Rd
with variance

proxy

(D.3) σ2
T = sup

t∈[0,T ]

{α2
t (αtβ̇t − α̇tβt)2

(α2
t + σ2β2

t )2 + σ2(αtβ̇t − α̇tβt)2

α2
t + σ2β2

t

}
≤ Cλ(T ),
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where C is a constant only depending on σ.

Step 2. Truncation.
Notice that the velocity fields b∗

is defined on Rd
. It is necessary to restrict the original

problem onto a compact subset of Rd
by the technique of truncation. To begin with, we

define the truncated population and empirical excess risks with radius R > 1, respectively,

as

ET,R(b) = 1
T

∫ T

0
EXt∼µt

[
∥b∗(t,Xt)− b(t,Xt)∥221{∥Xt∥∞ ≤ R}

]
dt,

ÊT,R,n(b) = 1
n

n∑
i=1
∥b∗(t(i), X(i)

t )− b(t(i), X(i)
t )∥221{∥X

(i)
t ∥∞ ≤ R}.

The population excess risk of the estimator b̂ can be decomposed by

(D.4) ES[ET (b̂)] ≤ ES

[
ET (b̂)− ET,R(b̂)

]
+ ES

[
sup
b∈B
ET,R(b)− 2ÊT,R,n(b)

]
+ 2ES

[
ÊT,R,n(b̂)

]
.

The first term in the right-hand side of (D.4) corresponds to the truncation error, which is

estimated in the rest of this step. The second term of (D.4) is studied in Step 3. Finally, we

bound the last term of (D.4) in Step 4.

For each hypothesis b ∈ B, it follows that

EXt∼µt

[
∥b∗(t,Xt)− b(t,Xt)∥221{∥Xt∥∞ > R}

]
≤ E1/2

Xt∼µt

[
∥b∗(t,Xt)− b(t,Xt)∥42

]
E

1/2
Xt∼µt

[
1{∥Xt∥∞ > R}

]
≤ 8

(
E

1/2
Xt∼µt

[
∥b(t,Xt)∥42

]
+ E1/2

Xt∼µt

[
∥b∗(t,Xt)∥42

])
Pr1/2{∥Xt∥∞ > R},(D.5)

where the first inequality follows from Cauchy-Schwarz inequality, and the second inequal-

ity is due to the triangular inequality. The boundedness of the hypothesis (D.1) deduces

(D.6) E
1/2
Xt∼µt

[
∥b(t,Xt)∥42

]
≤ dB2

velR
2.

Then we consider the fourth moment of b∗(t,Xt) in (D.5). By using Assumption 2, we have

Yt = α̇tX0 + β̇tX1
d= α̇tX0 + β̇tU + σβ̇tϵ, U ∼ ν, ϵ ∼ N(0, Id),

which implies

E1/2
[
∥Yt∥42

]
≤ E1/2

[
(∥α̇tX0∥2 + ∥β̇tU∥2 + ∥σβ̇tϵ∥2)4

]
≤ 27

(
α̇4

tE
[
∥X0∥42

]
+ β̇4

tE
[
∥U∥42

]
+ σ4β̇4

tE
[
∥ϵ∥42

])1/2

≤ 81d(α̇2
t + β̇2

t + σ2β̇2
t ) ≤ Cλ(T ), t ∈ [0, T ],

where the second inequality holds from the triangular inequality, the last inequality follows

from Lemma A.7, and the constant C only depends in d and σ. Consequently,

(D.7) E
1/2
Xt

[
∥b∗(t,Xt)∥42

]
= E1/2

Xt

[
∥E[Yt|Xt]∥42

]
≤ E1/2

[
∥Yt∥42

]
≤ Cλ(T ),



50 DING, DUAN, JIAO, LI, YANG, AND ZHANG

where the first inequality is due to the definition of velocity, and the second inequality follows

from Jensen’s inequality. We next consider the tail probability of Xt in (D.5). According to

Assumption 2, we find

Xt
d= αtX0 + βtU + σβtϵ, U ∼ νt,x, ϵ ∼ N(0, Id),

which implies from Hoeffding’s lemma (Mohri et al., 2018, Lemma D.1) and Lemma A.4 that

Xt is a (α2
t + β2

t + σ2β2
t )-sub-Gaussian random variable. Then it follows from Lemma A.5

that

(D.8) sup
t∈(0,1)

Pr
{
∥Xt∥∞ > R

}
≤ 2d sup

t∈(0,1)
exp

(
− R2

2(α2
t + β2

t + σ2β2
t )

)
≤ 2d

exp(θR2) ,

where θ is a constant only depending on σ. Substituting (D.6), (D.7), and (D.8) into (D.5)

yields

EXt∼µt

[
∥b∗(t,Xt)− b(t,Xt)∥221{∥Xt∥∞ > R}

]
≤ Cλ(T )R2

exp(θR2) , t ∈ [0, T ],

where C is a constant only depending on d and σ. As a consequence, for each hypothesis

b ∈ B, it follows that

(D.9) ET (b)− ET,R(b) ≤ Cλ(T )R2

exp(θR2) .

Hence the first term in the right-hand side of (D.4) can be bounded by

(D.10) ES

[
ET (b̂)− ET,R(b̂)

]
≤ Cλ(T )R2

exp(θR2) .

We next bound another truncation term by a similar argument, which will be used in Step
4. It follows from Cauchy-Schwarz inequality and (D.8) that

(D.11) ES

[
(ε(i)

t,k)2
1{∥X(i)

t ∥∞ > R}
]
≤ E1/2

S

[
(ε(i)

t,k)4
]

Pr1/2{∥X(i)
t ∥∞ > R} ≤ Cλ(T )R2

exp(θR2) ,

where C is a constant only depending on d and σ, and the last inequality follows from the

fact that ε
(i)
t,k is sub-Gaussian with variance proxy in (D.3).

Step 3. Relate the truncated population excess risk of the estimator with its empirical counterpart.
In this step, we prove the following inequality:

(D.12) ES

[
sup
b∈B
ET,R(b)− 2ÊT,R,n(b)

]
≤ CR2

d∑
k=1

VCdim(ΠkB)
n log−1(n)

,

whereC is a constant only depending on d and σ, and n ≥ VCdim(ΠkB) for each 1 ≤ k ≤ d.

For simplicity of notation, we define the k-th term of excess risks as

Ek
T,R(b) = 1

T

∫ T

0
EXt∼µt

[
(b∗

k(t,Xt)− bk(t,Xt))2
1{∥Xt∥∞ ≤ R}

]
dt,

Êk
T,R,n(b) = 1

n

n∑
i=1

(b∗
k(t(i), X(i)

t )− bk(t(i), X(i)
t ))2

1{∥X(i)
t ∥∞ ≤ R}.

Applying Proposition 3.2, (D.1), and Lemma G.1 yields the following inequality

ES

[
sup
b∈B
Ek

T,R(b)− 2Êk
T,R,n(b)

]
≤ CR2 VCdim(ΠkB)

n log−1(n)
, 1 ≤ k ≤ d,
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which implies (D.12) by summing with respect to 1 ≤ k ≤ d.

Step 4. Estimate the empirical excess risk.
In this section, we shown the following bound for the empirical excess risk of the estimator

(D.13) ES

[
ÊT,R,n(b̂)

]
≤ 2 inf

b∈B
ET,R(b) + Cλ(T )R2

( d∑
k=1

VCdim(ΠkB)
n log−1 n

+ 1
exp(θR2)

)
,

whereC is a constant only depending on d and σ, and n ≥ VCdim(ΠkB) for each 1 ≤ k ≤ d.

It is straightforward that

L̂T,R,n(b̂) = 1
n

n∑
i=1

d∑
k=1

(ε(i)
t,k + b∗

k(t(i), X(i)
t )− b̂k(t(i), X(i)

t ))2
1{∥X(i)

t ∥∞ ≤ R}

= ÊT,R,n(b̂) + 1
n

n∑
i=1

d∑
k=1

(ε(i)
t,k)2

1{∥X(i)
t ∥∞ ≤ R}

+ 2
n

n∑
i=1

d∑
k=1

ε
(i)
t,k(b∗

k(t(i), X(i)
t )− b̂k(t(i), X(i)

t ))1{∥X(i)
t ∥∞ ≤ R}.

Since b̂ is a minimizer of L̂T,n(·) over the hypothesis class B, it holds that L̂T,R,n(b̂) ≤
L̂T,n(b̂) ≤ L̂T,n(b) for each b ∈ B. Consequently,

(D.14)

ES

[
ÊT,R,n(b̂)

]
≤ LT (b)− ES

[ 1
n

n∑
i=1

d∑
k=1

(ε(i)
t,k)2

1{∥X(i)
t ∥∞ ≤ R}

]

+ 2ES

[ 1
n

n∑
i=1

d∑
k=1

ε
(i)
t,k b̂k(t(i), X(i)

t )1{∥X(i)
t ∥∞ ≤ R}

]
,

where we used the fact that E[L̂T,n(b)] = LT (b) and E[ε(i)
t,kb

∗(t(i), X(i)
t )] = 0. For the first

term in the right-hand side of (D.14), we have

LT (b)− ES

[ 1
n

n∑
i=1

d∑
k=1

(ε(i)
t,k)2

1{∥X(i)
t ∥∞ ≤ R}

]

= ET (b) + ES

[ 1
n

n∑
i=1

d∑
k=1

(ε(i)
t,k)2

1{∥X(i)
t ∥∞ > R}

]
≤ ET,R(b) + 2Cλ(T )R2

exp(θR2) ,(D.15)

where the inequality follows from (D.9) and (D.11). It remains to bound the second term in

the right-hand side of (D.14). Plugging Proposition 3.2 and (D.3) into Lemma G.2, we have

ES

[ 1
n

n∑
i=1

d∑
k=1

ε
(i)
t,k b̂k(t(i), X(i)

t )1{∥X(i)
t ∥∞ ≤ R}

]

≤ 1
4ES

[
ÊT,R,n(b̂)

]
+ Cλ(T )R2

d∑
k=1

VCdim(ΠkB)
n log−1 n

,(D.16)

where C is a constant only depending d and σ. Substituting (D.15) and (D.16) into (D.14)

yields (D.13).

Finally, plugging (D.10), (D.12), and (D.13) into (D.4) completes the proof. □
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Lemma D.2 (Approximation error). Let T ∈ (1/2, 1) and R ∈ (1,+∞). Set the hypothesis class
B as a deep neural network class, which is defined as

B =

b ∈ N(L, S) :
∥b(t, x)∥∞ ≤ BvelR, ∥∂tb(t, x)∥2 ≤ 3Dκ(T )R,

∥∇b(t, x)∥op ≤ 3G, (t, x) ∈ [0, T ]×Rd

 ,

where the depth and the width of the neural network are given, respectively, asL = C andS = CNd+1.
Then the following inequality holds for each N ∈N+,

inf
b∈B
ET,R(b) ≤ Cκ2(T )R2N−2,

where C is a constant only depending on d and σ.

Proof of Lemma D.2. Denote by B∞
R,T = [0, T ] × B∞

R . According to Corollary H.6, for each

element 1 ≤ k ≤ d, there exists a real-valued deep neural network bk with depth Lk =
⌈log2(d+ 1)⌉+ 3 and number of parameters Sk = (22(d+ 1) + 6)(N + 1)d+1

, such that

1
T

∫ T

0
EXt∼µt

[
(bk(t,Xt)− b∗

k(t,Xt))2
1{∥Xt∥∞ ≤ R}

]
dt

≤ ∥bk − b∗
k∥2L∞(B∞

R,T ) ≤ C
(
T 2∥∂tb

∗
k∥2L∞(B∞

R,T ) +R2
d∑

ℓ=1
∥∂ℓb

∗
k∥2L∞(B∞

R,T )

)
N−2,

where C is a constant only depending on d and σ, and the first inequality follows from

Hölder’s inequality. Then we construct a vector-valued deep neural network b(t, x) =
(bk(t, x))d

k=1 with depth L = max1≤k≤d Lk and number of parameters S =
∑d

k=1 Sk, such

that

1
T

∫ T

0
EXt∼µt

[
∥bk(t,Xt)− b∗

k(t,Xt)∥221{∥Xt∥∞ ≤ R}
]

dt

=
d∑

k=1

1
T

∫ T

0
EXt∼µt

[
(bk(t,Xt)− b∗

k(t,Xt))2
1{∥Xt∥∞ ≤ R}

]
dt

≤ C
(
T 2

d∑
k=1
∥∂tb

∗
k∥2L∞(B∞

R,T ) +R2
d∑

ℓ=1

d∑
k=1
∥∂ℓb

∗
k∥2L∞(B∞

R,T )

)
N−2 ≤ C ′κ2(T )R2N−2,

where C and C ′
are two constants only depending on d and σ, and the last inequality holds

from Propositions 3.5 and 3.8. This completes the proof. □

Proof of Theorem 3.9. Set the hypothesis class as that in Lemma D.2. According to Lemma D.2,

there exists a vector-valued deep neural network b ∈ B such that

(D.17) inf
b∈B
ET,R(b) ≤ Cκ2(T )R2N−2,

where C is a constant only depending on d and σ. On the other hand, by applying

Lemma A.12, the VC-dimension of this deep neural network class B is given as

(D.18) VCdim(ΠkB) ≤ CNd+1 logN,
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where C is an absolute constant. Plugging (D.17) and (D.18) into Lemma D.1 yields

ES

[
ET (b̂)

]
≤ CR2

(κ2(T )
N2 + λ(T )Nd+1 logN

n log−1 n
+ λ(T )

exp(θR2)
)

≤ Cκ2(T )R2
( 1
N2 + Nd+1 logN

n log−1 n
+ 1

exp(θR2)
)
,

where θ is a constant only depending on σ, and C is a constant only depending on d and σ.

Here the last inequality follows from the fact that

λ(T ) = sup
t∈[0,T ]

α̇2
t ≤ C ′ sup

t∈[0,T ]

( α̇2
t

α2
t

+ |α̈t|
αt

)
= C ′κ2(T ),

where C ′
is a constant only depending on σ. By setting N = Cn

1
d+3 , we obtain that

(D.19) ES

[
ET (b̂)

]
≤ Cκ2(T )R2

(
n− 2

d+3 log(n) + exp(−θR2)
)

Then by substituting R2 = log(n)θ−1
, we obtain the desired result. □

D.2. Proof of Corollary 3.10. Before proceeding, recall the probability flow ODE with exact

velocity field (2.4) and estimated velocity field (3.2), respectively, as

(D.20)

dZ(t) = b∗(t, Z(t)) dt, t ∈ (0, T ),

Z(0) = Z0,

and

(D.21)

dẐ(t) = b̂(t, Ẑ(t)) dt, t ∈ (0, T ),

Ẑ(0) = Z0.

The following lemma bounds the particle error by the velocity error.

Lemma D.3. Let ∥B∥Lip be the uniform Lipschitz constant of b ∈ B. Then it follows that

∥Z(T )− Ẑ(T )∥2 ≤ exp(∥B∥LipT )
∫ T

0
∥b∗(t, Z(t))− b̂(t, Z(t))∥2 dt.

Proof of Lemma D.3. It is straightforward that

d
dt∥Z(t)− Ẑ(t)∥22 =

d∑
k=1

d
dt(Zk(t)− Ẑk(t))2

= 2
d∑

k=1
(Zk(t)− Ẑk(t))(b∗

k(t, Z(t))− b̂k(t, Ẑ(t)))

≤ 2∥Z(t)− Ẑ(t)∥2∥b∗(t, Z(t))− b̂(t, Ẑ(t))∥2,(D.22)

where the second inequality follows from (D.20) and (D.21), and the inequality holds from

Cauchy-Schwarz inequality. On the other hand, we find

(D.23)

d
dt∥Z(t)− Ẑ(t)∥22 = 2∥Z(t)− Ẑ(t)∥2

d
dt∥Z(t)− Ẑ(t)∥2.

Combining (D.22) and (D.23) implies

d
dt∥Z(t)− Ẑ(t)∥2 ≤ ∥b∗(t, Z(t))− b̂(t, Ẑ(t))∥2.
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Then using the triangular inequality implies

d
dt∥Z(t)− Ẑ(t)∥2 ≤ ∥b∗(t, Z(t))− b̂(t, Z(t))∥2 + ∥b̂(t, Z(t))− b̂(t, Ẑ(t))∥2

≤ ∥b∗(t, Z(t))− b̂(t, Z(t))∥2 + ∥b̂∥Lip∥Z(t)− Ẑ(t)∥2.

By using Gronwall’s inequality (Evans, 2010, Section B.2), we have

∥Z(T )− Ẑ(T )∥2 ≤ exp(∥b̂∥LipT )
∫ T

0
∥b∗(t, Z(t))− b̂(t, Z(t))∥2 dt.

This completes the proof. □

Then we turn to estimate the distribution error using the particle error bound derived in

Lemma D.3.

Proof of Corollary 3.10. According to Lemma D.3, we have

∥Z(T )− Ẑ(T )∥2 ≤ exp(∥B∥LipT )
∫ T

0
∥b∗(t, Z(t))− b̂(t, Z(t))∥2 dt.

Taking expectation with respect to Z0 ∼ µ0 implies

W 2
2 (µT , µ̂T ) ≤ EZ0∼µ0

[
∥Z(T )− Ẑ(T )∥22

]
≤ exp(2∥B∥LipT )

∫ T

0
EXt∼µt

[
∥b∗(t,Xt)− b̂(t,Xt)∥22

]
dt,

where the first inequality follows from the definition of 2-Wasserstein distance and Jensen’s

inequality. Substituting Theorem 3.9 into the above inequality completes the proof. □

Appendix E. Proofs of Results in Section 3.4

In this section, we present the proof of Theorem 3.11 and Corollary 3.12. Recall Euler

scheme (2.9) as

(E.1)

Ẑk = Ẑk−1 + b̂(tk−1, Ẑk−1)τ, 1 ≤ k ≤ K,

Ẑ0 = Z0.

The following lemma states the discretization error of Euler method, which uses some

standard techniques in the numerical analysis for the forward Euler method (Iserles, 2008,

Theorem 1.1).

Lemma E.1 (Discretization error of Euler method). Let ∥B∥Lip be the uniform Lipschitz constant
of b ∈ B. Then it follows that

∥Ẑ(T )− ẐK∥2 ≤
T

K

exp(∥B∥LipT )− 1
∥B∥Lip

Dκ(T )R.

Proof. The proof is divided into two steps.

Step 1. Local truncation error estimate.
Consider the Taylor expansion of Ẑ(tk+1) around t = tk,

Ẑ(tk+1) = Ẑ(tk) + d
dt Ẑ(tk)τ + d2

dt2 Ẑ(θ)τ2

= Ẑ(tk) + b̂(tk, Ẑ(tk))τ + ∂tb̂(θ, Ẑ(θ))τ2,(E.2)
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where θ ∈ [tk, tk+1], and the second equality holds from the ODE (2.4). Recalling the forward

Euler method (2.9)

(E.3) Ẑk+1 = Ẑk + b̂(tk, Ẑk)τ.

Subtracting (E.3) from (E.2) yields

∥Ẑ(tk+1)− Ẑk+1∥2 ≤ ∥Ẑ(tk)− Ẑk∥2 + ∥b̂(tk, Ẑ(tk))− b̂(tk, Ẑk)∥2τ +Dκ(T )Rτ2

≤ (1 + ∥B∥Lipτ)∥Ẑ(tk)− Ẑk∥2 +Dκ(T )Rτ2,(E.4)

where the first inequality holds from the triangular inequality and Proposition 3.8, and

∥B∥Lip denotes the Lipschitz constant of b with respect to the second variable. According

to the definition of the hypothesis class B in Theorem 3.9, we have ∥B∥Lip ≤ 3G.

Step 2. Global truncation error estimate.
We now show that the following inequality holds

(E.5) ∥Ẑ(tk)− Ẑk∥2 ≤
(1 + ∥B∥Lipτ)k − 1

∥B∥Lip
Dκ(T )Rτ, 1 ≤ k ≤ K.

We prove (E.5) by induction. When k = 1, since that Ẑ(0) = Ẑ0, it follows from (E.4) that

∥Ẑ(t1)− Ẑ1∥2 ≤ δ(t0, Ẑ(t0))τ +Dκ(T )Rτ2,

which satisfies (E.5). For general k ≥ 2 we assume that (E.5) holds up to k − 1. Then

applying (E.4) implies that

∥Ẑ(tk)− Ẑk∥2 ≤ (1 + ∥B∥Lipτ)∥Ẑ(tk−1)− Ẑk−1∥2 +Dκ(T )Rτ2

≤ (1 + ∥B∥Lipτ)k − 1
∥B∥Lip

Dκ(T )Rτ,

which proves that (E.5) is true for k. Therefore, we have verified the inequality (E.5).

SubstitutingKτ = T and (1+∥B∥Lipτ)k ≤ exp(∥B∥Lipkτ)into (E.5) completes the proof. □

Proof of Theorem 3.11. Combining Lemmas D.3 and E.1, we have

∥Z(T )− ẐK∥2 ≤ ∥Z(T )− Ẑ(T )∥2 + ∥Ẑ(T )− ẐK∥2

≤ exp(∥B∥LipT )
( ∫ T

0
∥b∗(t, Z(t))− b̂(t, Z(t))∥2 dt+ TDκ(T )

K
R

)
.

Taking expectation with respect to Z0 ∼ µ0 implies

W 2
2 (µT , µ̂K) ≤ EZ0∼µ0

[
∥Z(T )− ẐK∥22

]
≤ 2 exp(2∥B∥LipT )

( ∫ T

0
EXt∼µt

[
∥b∗(t,Xt)− b̂(t,Xt)∥22

]
dt+ T 2D2κ2(T )

K2 R2
)
.

Combining this inequality with Theorem 3.9 competes the proof. □

Proof of Corollary 3.12. We first show that

(E.6) W2(µT , µ1) ≤ max{αT , 1− βT }W2(µ0, µ1).
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Indeed, let X0 ∼ µ0 and X1 ∼ µ1 be two independent random variables. Then XT =
αTX0 + βTX1 is a random variable obeying µT . It follows that

∥XT −X1∥2 = ∥αTX0 − (1− βT )X1∥2 ≤ max{αT , 1− βT }∥X0 −X1∥2.

Taking expectation on both sides of the inequality with respect to X0 and X1 and recalling

the definition of 2-Wasserstein distance implies (E.6).

According to the triangular inequality of the Wasserstein distance (Villani, 2009, Chapter

6), we have

W2(µ̂K , µ1) ≤W2(µ̂K , µT ) +W2(µT , µ1)

≤W2(µ̂K , µT ) + 2 max{αt, 1− βt}W2(µ0, µ1),

where we used Lemma E.6. Combining this with Theorem 3.11 implies the desired result.

□

Appendix F. Proof of Results in Section 3.5

In this section, we aim to prove Theorem 3.13. Towards this end, we first relate the aver-

aged 2-Wasserstein distance of the characteristic generator to itsL2
-risk by Lemma F.1. Then

an oracle inequality of L2
-risk are proposed in Lemma F.2. Finally, by substituting approxi-

mation and generalization error bounds into the oracle inequality and using Theorem 3.11

completes the proof.

Lemma F.1. Let ĝt,s be the estimator defined as (2.11). Then it follows that

2
T 2

∫ T

0

∫ T

t
W 2

2

(
(ĝt,s)♯µt, µs

)
dsdt

≤ EZ0∼µ0

[ 2
T 2

∫ T

0

∫ T

t
∥g∗(t, s, Zt)− ĝ(t, s, Zt)∥22 dsdt

]
.

Proof of Lemma F.1. According to the definition of 2-Wasserstein distance as Definition 1.2, it

follows that

W 2
2

(
(ĝt,s)♯µt, µs

)
≤ EZ0∼µ0

[
∥ĝ(t, s, Zt)− Zs∥22

]
.

Integrating both sides of the inequality with respect to 0 ≤ t ≤ s ≤ T deduces

2
T 2

∫ T

0

∫ T

t
W 2

2

(
(ĝt,s)♯µt, µs

)
dsdt

≤ 2
T 2

∫ T

0

∫ T

t
EZ0∼µ0

[
∥Zs − ĝ(t, s, Zt)∥22

]
dsdt

= 2
T 2

∫ T

0

∫ T

t
EZt∼µt

[
∥g∗(t, s, Zt)− ĝ(t, s, Zt)∥22

]
dsdt

= EZ0∼µ0

[ 2
T 2

∫ T

0

∫ T

t
∥g∗(t, s, Zt)− ĝ(t, s, Zt)∥22 dsdt

]
,

which completes the proof. □
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Lemma F.2 (Oracle inequality for characteristic fitting). Suppose Assumptions 1 and 2 hold.
Let T ∈ (1/2, 1) and R ∈ (1,+∞). Further, assume the hypothesis class G satisfies the following
conditions for each (t, x) ∈ [0, T ]×Rd:

(i) sup1≤k≤d |gk(t, s, x)| ≤ BflowR,
(ii) ∥∂tg(t, s, x)∥2, ∥∂sg(t, s, x)∥2 ≤ 3BvelR, and
(iii) ∥∇g(t, s, x)∥op ≤ 3 exp(∥B∥LipT ).

Then the following inequality holds for each m ≥ max1≤k≤d VCdim(ΠkG ),

EZ

[
RT (ĝ)

]
≤ inf

g∈G
RT,R(g) + CW 2

2 (µ̂K , µT )

+ CR2 max
1≤k≤d

VCdim(ΠkG )
m log−1(m)

+ CR2

K
+ CR2

exp(θR2) ,

where the constant θ only depends on σ, and the constant C only depends on d and σ.

Proof of Lemma F.2. Recall the set of m random variables Z = {Z(i)
0 }mi=1 i.i.d. sampled from

µ0. Further, let Z
(i)
t denote the solution of the ODE (2.4) at time t ∈ [0, 1] given initial value

Z
(i)
0 for each 1 ≤ i ≤ m, and let Ẑ

(i)
k denote the solution of Euler method (2.9) given the

same initial value Z
(i)
0 at time kτ for 1 ≤ k ≤ d.

We first recall the empirical risk of the characteristic fitting:

(F.1)

R̂Euler
T,m,K(g) = 2

mK2

m∑
i=1

{
K−1∑
k=0

1
2∥Ẑ

(i)
k − g(kτ, kτ, Ẑ(i)

k )∥22

+
K−1∑
k=0

K−1∑
ℓ=k+1

∥Ẑ(i)
ℓ − g(kτ, ℓτ, Ẑ(i)

k )∥22

}
.

Then replacing Euler solutions {Ẑ(i)
k : 1 ≤ k ≤ d}mi=1 in the empirical risk by exact solutions

{Z(i)
k : 1 ≤ k ≤ d}mi=1 of the ODE (2.4) yields an auxiliary empirical risk

(F.2)

R̂T,m,K(g) = 2
mK2

m∑
i=1

{
K−1∑
k=0

1
2∥g

∗(kτ, kτ, Z(i)
kτ )− g(kτ, kτ, Z(i)

kτ )∥22

+
K−1∑
k=0

K−1∑
ℓ=k+1

∥g∗(kτ, ℓτ, Z(i)
kτ )− g(kτ, ℓτ, Z(i)

kτ )∥22

}
.

Next we introduce a spatial truncation to (F.2), which implies the following risk:

(F.3)

R̂T,R,m,K(g) = 2
mK2

m∑
i=1

K−1∑
k=0

{
1
2∥g

∗(kτ, kτ, Z(i)
kτ )− g(kτ, kτ, Z(i)

kτ )∥22

+
K−1∑

ℓ=k+1
∥g∗(kτ, ℓτ, Z(i)

kτ )− g(kτ, ℓτ, Z(i)
kτ )∥22

}
1{∥Z(i)

kτ ∥∞ ≤ R}.

We then define the following semi-discretized risk, which replaces the empirical average

with respect to first two variables in (F.3) by its population :

(F.4) R̂T,R,m(g) = 1
m

m∑
i=1

{ 2
T 2

∫ T

0

∫ T

t
∥g∗(t, s, Z(i)

t )− g(t, s, Z(i)
t )∥221{∥Z

(i)
t ∥∞ ≤ R} dsdt

}
.
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Finally, recall the population risk of the characteristic fitting

(F.5) RT (g) = EZ0∼µ0

[ 2
T 2

∫ T

0

∫ T

t
∥g∗(t, s, Zt)− g(t, s, Zt)∥22 dsdt

]
,

of which the spatial truncated counterpart is given as

(F.6) RT,R(g) = EZ0∼µ0

[ 2
T 2

∫ T

0

∫ T

t
∥g∗(t, s, Zt)− g(t, s, Zt)∥221{∥Zt∥∞ ≤ R} dsdt

]
.

According to definitions (F.1) to (F.6), it is straightforward that for each g ∈ G ,

RT (ĝ) ≤
(
RT (ĝ)−RT,R(ĝ)

)
+

(
RT,R(ĝ)− 2R̂T,R,m(ĝ)

)
+ 2

(
R̂T,R,m(ĝ)− R̂T,R,m,K(ĝ)

)
+ 2

(
R̂T,R,m,K(ĝ)− R̂T,m,K(ĝ)

)
+

(
2R̂T,m,K(ĝ)− R̂Euler

T,m,K(ĝ)
)

+ R̂Euler
T,m,K(g),

where the inequality follows from the fact that ĝ is the minimizer of the empirical risk

minimizer R̂Euler
T,m,K over the hypothesis class G . Taking expectation on both sides of the

inequality with respect to Z ∼ µm
0 yields

(F.7)

EZ

[
RT (ĝ)

]
≤

(
RT (ĝ)−RT,R(ĝ)

)
+ EZ

[
sup
g∈G
RT,R(g)− 2R̂T,R,m(g)

]
+ 2EZ

[
R̂T,R,m(ĝ)− R̂T,R,m,K(ĝ)

]
+ 2EZ

[
R̂T,R,m,K(ĝ)− R̂T,m,K(ĝ)

]
+ EZ

[
2R̂T,m,K(ĝ)− R̂Euler

T,m,K(ĝ)
]

+ inf
g∈G
EZ

[
R̂Euler

T,m,K(g)
]
,

where we used the inequality sup(a+ b) ≤ sup(a) + sup(b).
Up to now, theL2

-risk of the estimator ĝ is divided into six terms by (F.7). In the remainder

of the proof, we bound six these error terms one by one.

(i) The first term in the right-hand side of (F.7) measures the error caused by the spatial

truncation, for which

(F.8) RT (ĝ)−RT,R(ĝ) ≤ CR2

exp(θR2) ,

where the constant θ only depends on σ, and C only depends on d and σ.

(ii) The second term in the right-hand side of (F.7) is known as the generalization error,

for which

(F.9) EZ

[
sup
g∈G
RT,R(g)− 2R̂T,R,m(g)

]
≤ CR2 max

1≤k≤d

VCdim(ΠkG )
m log−1(m)

,

where the constant θ only depends on σ, and C only depends on d and σ.

(iii) The third term in the right-hand side of (F.7) is led by the time discretization. It holds

for each g ∈ G that

(F.10) R̂T,R,m(g)− R̂T,R,m,K(g) ≤ CR2

K
,

where the constant θ only depends on σ, and C only depends on d and σ.

(iv) The fourth term in the right-hand side of (F.7) is also a truncation error. By an

argument similar to (F.8), it holds that

(F.11) EZ

[
R̂T,R,m,K(ĝ)− R̂T,m,K(ĝ)

]
≤ CR2

exp(θR2) ,
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where the constant θ only depends on σ, and C only depends on d and σ.

(v) The fifth term in the right-hand side of (F.7) is caused by the error of Euler method,

for which

(F.12) EZ

[
R̂T,m,K(ĝ)− 2R̂Euler

T,m,K(ĝ)
]
≤ CW 2

2 (µ̂K , µT ),

where the constant θ only depends on σ, and C only depends on d and σ.

(vi) The sixth term in the right-hand side of (F.7) is the empirical risk of the estimator.

Using the definition of the empirical risk minimizer, we deduce

(F.13) EZ

[
R̂Euler

T,m,K(g)
]
≤ inf

g∈G
RT,R(g) + CW 2

2 (µ̂K , µT ) + CR2

K
+ CR2

exp(θR2) ,

where the constant θ only depends on σ, and C only depends on d and σ.

Plugging (F.8) to (F.13) into (F.7) obtains the desired result.

Step 1. Estimate the first term in the right-hand side of (F.7).
For each hypothesis g ∈ G , by an argument similar to (D.5), we have

EZt∼µt

[
∥g∗(t, s, Zt)− g(t, s, Zt)∥221{∥Zt∥∞ > R}

]
≤ E1/2

Zt∼µt

[
∥g∗(t, s, Zt)− g(t, s, Zt)∥42

]
E

1/2
Zt∼µt

[
1{∥Zt∥∞ > R}

]
≤ 8

(
E

1/2
Zt∼µt

[
∥Zs∥42

]
+ E1/2

Zt∼µt

[
∥g(t, s, Zt)∥42

])
Pr1/2{∥Zt∥∞ > R},(F.14)

where the first inequality holds from Cauchy-Schwarz inequality, and the second inequality

is due to the triangular inequality. By using Assumption 2, we have

Zs
d= Xs

d= αsX0 + βsU + σβsϵ, U ∈ ν, ϵ ∼ N(0, Id),

which implies by an argument similar to (D.7) that

E
1/2
Zs

[
∥Zs∥42

]
= E1/2

Xs

[
∥Xs∥42

]
≤ E1/2

(X0,U,ϵ)

[
(∥αsX0∥2 + ∥βsU∥2 + ∥σβsϵ∥2)4

]
≤ 27

(
α4

sEX0

[
∥X0∥42

]
+ β4

sEU

[
∥U∥42

]
+ σ4β4

sEϵ

[
∥ϵ∥42

])1/2

≤ 81d(α2
s + β2

s + σ2β2
s ),

where the last inequality follows from Lemma A.7. As a consequence,

(F.15) E
1/2
Zt

[
∥g∗(t, s, Zt)∥42

]
= E1/2

Zs

[
∥Zs∥42

]
≤ C,

where the constant C only depends on d and σ. Additionally, by using the boundedness of

g ∈ G , we have

(F.16) E
1/2
Zt

[
∥g(t, s, Zt)∥42

]
≤ dB2

flowR
2.

Further, using (D.8) yields

(F.17) sup
t∈(0,1)

Pr
{
∥Zt∥∞ > R

}
= sup

t∈(0,1)
Pr

{
∥Xt∥∞ > R

}
≤ 2d

exp(θR2) ,
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where θ is a constant only depending on σ. Substituting inequalities (F.15), (F.16) and (F.17)

into (F.14) deduces

EZt∼µt

[
∥g∗(t, s, Zt)− ĝ(t, s, Zt)∥221{∥Zt∥∞ > R}

]
≤ CR2

exp(θR2) ,

where C is a constant only depending to d and σ. Finally, combining the above inequality

with definitions (F.5) and (F.6) completes the proof of (F.8).

Step 2. Estimate the second term in the right-hand side of (F.7).
For simplicity of notation, we define the k-th term of RT,R (F.6) and R̂T,R,m (F.4), respec-

tively, as

Rk
T,R(b) = EZ0∼µ0

[ 2
T 2

∫ T

0

∫ T

t
(g∗

k(t, s, Zt)− gk(t, s, Zt))2
1{∥Zt∥∞ ≤ R}dsdt

]
,

R̂k
T,R,m(b) = 1

m

m∑
i=1

{ 2
T 2

∫ T

0

∫ T

t
(g∗

k(t, s, Z(i)
t )− gk(t, s, Z(i)

t ))2
1{∥Z(i)

t ∥∞ ≤ R} dsdt
}
.

Applying the boundedness of g ∈ G , Proposition 3.3, and Lemma G.1 yields

EZ

[
sup
g∈G
Rk

T,R(g)− 2R̂k
T,R,m(g)

]
≤ CR2 VCdim(ΠkG )

m log−1(m)
, 1 ≤ k ≤ d.

Summing the above inequalities with respect to 1 ≤ k ≤ d completes the proof of (F.9).

Step 3. Estimate the third term in the right-hand side of (F.7).
For each fixed x ∈ B∞

R , we define an auxiliary function

u(t, s, x) = ∥g∗(t, s, x)− ĝ(t, s, x)∥22, 0 ≤ t ≤ s ≤ T, x ∈ B∞
R .

It is apparent that the following inequality holds for each 0 ≤ t ≤ s ≤ T and x ∈ B∞
R ,

(F.18) |∂tu(t, s, x)| ≤ 2∥g∗(t, s, x)− g(t, s, x)∥2∥∂tg
∗(t, s, x)− ∂tg(t, s, x)∥2 ≤ CR2,

where the first inequality follows from Cauchy-Schwarz inequality, and the last inequality

used Corollaries 3.3 and 3.4, and the definition of hypothesis class G . Here the constant C

only depends on d and σ. By the same argument, we have

(F.19) |∂su(t, s, x)| ≤ CR2, 0 ≤ t ≤ s ≤ T, x ∈ B∞
R .

Substituting (F.18) and (F.19) into Lemma F.3 yields (F.10).

Step 4. Estimate the forth term in the right-hand side of (F.7).
We use an argument similar to Step 1. For each 0 ≤ k ≤ ℓ ≤ K − 1, it follows that

EZ

[
∥g∗(kτ, ℓτ, Z(i)

kτ )− ĝ(kτ, ℓτ, Z(i)
kτ )∥221{∥Z

(i)
kτ ∥∞ > R}

]
≤ 8

(
E

1/2
Z

[
∥g∗(kτ, ℓτ, Z(i)

kτ )∥42
]

+ E1/2
Z

[
∥ĝ(kτ, ℓτ, Z(i)

kτ )∥42
])
E

1/2
Z

[
1

{
∥Z(i)

kτ ∥∞ > R
}]

= 8
(
E

1/2
Z

[
∥Z(i)

ℓτ ∥
4
2

]
+ E1/2

Z

[
∥ĝ(kτ, ℓτ, Z(i)

kτ )∥42
])

Pr1/2 {
∥Z(i)

kτ ∥∞ > R
}
,(F.20)

where we used Cauchy-Schwarz inequality and the triangular inequality. Substituting

inequalities (F.15), (F.16) and (F.17) into (F.20) yields that for 0 ≤ k ≤ ℓ ≤ K − 1,

(F.21) EZ

[
∥g∗(kτ, ℓτ, Z(i)

kτ )− ĝ(kτ, ℓτ, Z(i)
kτ )∥221{∥Z

(i)
kτ ∥∞ > R}

]
≤ CR2

exp(θR2) ,
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where C is a constant only depending on d and σ. Combining (F.21) with definitions (F.2)

and (F.3) deduces (F.11).

Step 5. Estimate the fifth term in the right-hand side of (F.7).
For each 1 ≤ i ≤ m and 0 ≤ k ≤ ℓ ≤ K − 1, it follows that

∥Ẑ(i)
ℓ − ĝ(kτ, ℓτ, Ẑ(i)

k )∥2

≤ ∥Ẑ(i)
ℓ − Z

(i)
ℓτ ∥2 + ∥Z(i)

ℓτ − ĝ(kτ, ℓτ, Z(i)
kτ )∥2 + ∥ĝ(kτ, ℓτ, Z(i)

kτ )− ĝ(kτ, ℓτ, Ẑ(i)
k )∥2

≤ ∥Ẑ(i)
ℓ − Z

(i)
ℓτ ∥2 + ∥g∗(kτ, ℓτ, Z(i)

kτ )− ĝ(kτ, ℓτ, Z(i)
kτ )∥2 + ∥ĝ∥Lip∥Ẑ

(i)
k − Z

(i)
kτ ∥2,

where we used the triangular inequality. Squaring both sides of the inequality yields

∥Ẑ(i)
ℓ − ĝ(kτ, ℓτ, Ẑ(i)

k )∥22

≤ 4∥Ẑ(i)
ℓ − Z

(i)
ℓτ ∥

2
2 + 4∥ĝ∥2Lip∥Ẑ

(i)
k − Z

(i)
kτ ∥

2
2 + 2∥g∗(kτ, ℓτ, Z(i)

kτ )− ĝ(kτ, ℓτ, Z(i)
kτ )∥22.(F.22)

Substituting (F.22) into (F.1) deduces

R̂Euler
T,m,K(ĝ) ≤ 2

mK2

m∑
i=1

K−1∑
k=0

{1
2

(
4∥Ẑ(i)

k − Z
(i)
kτ ∥

2
2 + 4∥ĝ∥2Lip∥Ẑ

(i)
k − Z

(i)
kτ ∥

2
2

)

+
K−1∑

ℓ=k+1

(
4∥Ẑ(i)

ℓ − Z
(i)
ℓτ ∥

2
2 + 4∥ĝ∥2Lip∥Ẑ

(i)
k − Z

(i)
kτ ∥

2
2

)}
+ 2R̂T,m,K(ĝ)

≤ 4(1 + ∥ĝ∥2Lip) 1
m

m∑
i=1
∥Ẑ(i)

K − Z
(i)
T ∥

2
2 + 2R̂T,m,K(ĝ),

where the last inequality holds from the fact that

∥Ẑ(i)
k − Z

(i)
kτ ∥2 ≤ ∥Ẑ

(i)
K − Z

(i)
T ∥2, 0 ≤ k ≤ K − 1,

which has been shown in the proof of Theorem 3.11. Consequently,

R̂Euler
T,m,K(ĝ)− 2R̂T,m,K(ĝ) ≤ 4(1 + ∥ĝ∥2Lip) 1

m

m∑
i=1
∥Ẑ(i)

K − Z
(i)
T ∥

2
2.

Taking expectation on both sides of the above inequality with respect to Z and plugging

∥ĝ∥Lip ≤ 3 exp(GT ) imply

(F.23) EZ

[
R̂Euler

T,m,K(ĝ)− 2R̂T,m,K(ĝ)
]
≤ CW 2

2 (µ̂K , µT ),

whereC is a constant only depending on d and σ. By the same argument as inequality (F.23),

we can obtain (F.12) immediately.

Step 6. Estimate the sixth term in the right-hand side of (F.7).
For each fixed g ∈ G independent of Z, it follows that

EZ

[
R̂Euler

T,m,K(g)
]

= EZ

[
R̂Euler

T,m,K(g)− 2R̂T,m,K(g)
]

+ 2EZ

[
R̂T,m,K(g)− R̂T,R,m,K(g)

]
+ 2EZ

[
R̂T,R,m,K(g)− R̂T,R,m(g)

]
+ 2EZ

[
R̂T,R,m(g)

]
,

where the first term can be estimated by (F.23), the second and third terms can be bounded

by an argument similar to (F.11) and (F.10), respectively. For the last term, we have

EZ[R̂T,R,m(g)] = RT,R(g). Combining above results yields (F.13). □
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Proof of Theorem 3.13. According to Lemma D.2, the following inequality holds

(F.24) inf
g∈G
RT,R(g) ≤ CR2

N2 ,

where C is a constant only depending on d and σ. On the other hand, by applying

Lemma A.12, the VC-dimension of this deep neural network class G is given as

(F.25) VCdim(ΠkG ) ≤ CNd+2 logN,

where C is an absolute constant. Plugging (F.24) and (F.25) into Lemma F.2 yields

EZ

[
RT (ĝ)

]
≤ CR2

N2 + CW 2
2 (µ̂K , µT ) + CR2 max

1≤k≤d

Nd+2 logN
m log−1(m)

+ CR2

K
+ CR2

exp(θR2) ,

where C is a constant only depending to d and σ. By setting N = Cm
1

d+4 and R2 =
log(m)θ−1

, we have

EZ

[
RT (ĝ)

]
≤ Cm− 2

d+4 log2(m) + CW 2
2 (µ̂K , µT ) + C log(m)

K
,

Finally, we relate RT (ĝ) to D(ĝ) by Lemma F.1. Finally, using Theorem 3.11 completes the

proof. □

We conclude this section by giving an error bound for 2-dimensional numerical integral.

Lemma F.3. Let T > 0 and K ∈ N+. Assume that u ∈ W 1,∞([0, T ]2). Define the step size as
τ = T/K, and define {tℓ = ℓτ}Kℓ=0 as the set of time points. Then it follows that

T 2

K2

K∑
k=1

{1
2u(tk−1, tk−1) +

K∑
ℓ=k+1

u(tk−1, tℓ−1)
}
−

∫ T

0

∫ T

t
u(s, t) dsdt

≤
(
∥∂tu∥L∞([0,T ]2) + ∥∂su∥L∞([0,T ]2)

) T
K
.

Proof of Lemma F.3. According to the Taylor expansion of u(s, t) around (tk−1, tℓ−1) with

1 ≤ k ≤ ℓ ≤ K, it follows that

(F.26) u(t, s) = u(tk−1, tℓ−1) + ∂tu(θt
k−1, tℓ−1)(t− tk−1) + ∂su(tk−1, θ

s
ℓ−1)(s− tℓ−1),

where θt
k−1 ∈ [tk−1, t] and θs

ℓ−1 ∈ [tℓ−1, s].
For 1 ≤ ℓ = k ≤ K, integrating both sides of (F.26) on (t, s) ∈ [tk−1, tk]× [t, tk] yields∫ tk

tk−1

∫ tk

t
u(t, s) dsdt− u(tk−1, tk−1)τ

2

2

= ∂tu(θt
k−1, tk−1)

∫ tk

tk−1
(tk − t)(t− tk−1) dt+ ∂su(tk−1, θ

s
k−1)

∫ tk

tk−1

∫ tk

t
(s− tk−1) dsdt

= ∂tu(θt
k−1, tk−1)τ

3

6 + ∂su(tk−1, θ
s
k−1)τ

3

3 ,
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where we used the fact that tk − tk−1 = τ . By summing both sides of the above equality

with respect to k = 1, . . . ,K, we obtain

T 2

2K2

K∑
k=1

u(tk−1, tk−1)−
K∑

k=1

∫ tk

tk−1

∫ tk

t
u(t, s) dsdt

≤ sup
(t,s)∈[0,T ]2

{
|∂tu(t, s)|+ |∂su(t, s)|

} T 3

3K2 .(F.27)

For 1 ≤ ℓ < k ≤ K, integrating both sides of (F.26) on (t, s) ∈ [tk−1, tk]× [tℓ−1, tℓ] yields∫ tk

tk−1

∫ tℓ

tℓ−1
u(t, s) dsdt− u(tk−1, tℓ−1)τ2

= ∂tu(θt
k−1, tℓ−1)τ

∫ tk

tk−1
(t− tk−1) dt+ ∂su(tk−1, θ

s
ℓ−1)τ

∫ tℓ

tℓ−1
(s− tℓ−1) ds

= ∂tu(θt
k−1, tℓ−1)τ

3

2 + ∂su(tk−1, θ
s
ℓ−1)τ

3

2 .

By a similar argument to (F.27), it follows that

T 2

K2

K∑
k=1

K∑
ℓ=k+1

u(tk−1, tℓ−1)−
K∑

k=1

K∑
ℓ=k+1

∫ tk

tk−1

∫ tℓ

tℓ−1
u(t, s) dsdt

≤ sup
(t,s)∈[0,T ]2

{
|∂tu(t, s)|+ |∂su(t, s)|

} T 3

4K .(F.28)

Summing (F.27) and (F.28) completes the proof. □

Appendix G. Generalization Error Analysis for Least-Squares Regression

In this section, we provide a generalization error analysis for nonparametric regression,

which is used in establishing oracle inequalities for velocity matching (Lemma D.1) and

characteristic fitting (Lemma F.2).

Let X ⊆ Rd
be a bounded domain, and let X ∈ X be a random variable obeying the

probability distribution µ. Let f∗ : X → R be a measurable function. Define the population

L2(µ)-risk for a function f : X → R as

R(f) = ∥f − f∗∥2L2(µ) = EX∼µ

[
(f(X)− f∗(X))2]

.

Let D = {X(i)}ni=1 be a set of i.i.d. copies of X ∼ µ. Then define the empirical risk of f by

R̂n(f) = 1
n

n∑
i=1

(f(X(i))− f∗(X(i)))2.

The following lemma relates the population risk to its empirical counterpart.

Lemma G.1. Suppose that |f∗(x)| ≤ B for each x ∈ X . Let F be a set of functions mapping from
X to [−B,B]. Then it follows that for each n ≥ VCdim(F ),

ED

[
sup
f∈F

R(f)− 2R̂n(f)
]
≤ CB2 VCdim(F )

n log−1 n
,

where C is an absolute constant.
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This lemma provides a generalization error bound with fast rate via the technique of

the offset Rademacher complexity, which was first proposed by Liang et al. (2015). In

recent years, this technique has been applied to the convergence rate analysis for deep

nonparametric regression, such as (Duan et al., 2023, Lemma 14) and (Ding et al., 2024,

Lemma 4.1).

Proof of Lemma G.1. We define an auxiliary function class

H =
{
x 7→ h(x) = (f(x)− f∗(x))2 : f ∈ F

}
.

It is apparent that 0 ≤ h(x) ≤ 4B2
for each x ∈ X and h ∈H . Then it is easy to show that

ED

[
sup
f∈F

R(f̂)− 2R̂n(f̂)
]
≤ ED

[
sup
h∈H

E[h(X)]− 2
n

n∑
i=1

h(X(i))
]

≤ ED

[
sup
h∈H

E
[3
2h(X)− 1

8B2h
2(X)

]
− 1
n

n∑
i=1

(3
2h(X(i)) + 1

8B2h
2(X(i))

)]
,

where we used the fact that h2(x) ≤ 4B2h(x) for each x ∈ X and h ∈H .

Let us introduce a ghost sample D′ = {X(i),′}ni=1, which is a set of n i.i.d. random copies

of X ∼ µ. Here the ghost sample D′
is independent of D = {X(i)}ni=1. Let ξ = {ξ(i)}ni=1 be

a set of i.i.d. Rademacher variables. Then replacing the expectation by the empirical mean

based on the ghost sample D′
yields

ED

[
sup
h∈H

EX

[3
2h(X)− 1

8B2h
2(X)

]
− 1
n

n∑
i=1

(3
2h(X(i)) + 1

8B2h
2(X(i))

)]

= ED

[
sup
h∈H

ED′

[ 1
n

n∑
i=1

3
2h(X(i),′)− 1

8B2h
2(X(i),′)

]
− 1
n

n∑
i=1

(3
2h(X(i)) + 1

8B2h
2(X(i))

)]

≤ EDED′

[
sup
h∈H

3
2n

n∑
i=1

(h(X(i),′)− h(X(i)))− 1
8B2n

n∑
i=1

(h2(X(i),′) + h2(X(i)))
]

= EDED′Eξ

[
sup
h∈H

3
2n

n∑
i=1

ξ(i)(h(X(i),′)− h(X(i)))− 1
8B2n

n∑
i=1

(h2(X(i),′) + h2(X(i)))
]

= EDEξ

[
sup
h∈H

3
n

n∑
i=1

ξ(i)h(X(i))− 1
4B2n

n∑
i=1

h2(X(i))
]
,

where the inequality holds from Jensen’s inequality. Combining the above results, we have

(G.1) ED

[
sup
f∈F

R(f̂)− 2R̂n(f̂)
]
≤ EDEξ

[
sup
h∈H

3
n

n∑
i=1

ξ(i)h(X(i))− 1
4B2n

n∑
i=1

h2(X(i))
]
.

We next estimate the expectation in the right-hand side of (G.1). Let δ ∈ (0, 4B2) and Hδ

be a L∞(D) δ-cover of H satisfying |Hδ| = N(δ,H , L∞(D)). Then for each h ∈ H , there

exists hδ ∈Hδ such that

max
1≤i≤n

|h(X(i))− hδ(X(i))| ≤ δ.
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Without loss of generality, we assume |hδ(x)| ≤ 4B2
for each hδ ∈ Hδ. Consequently, it

follows from Hölder’s inequality that

1
n

n∑
i=1

ξ(i)h(X(i))− 1
n

n∑
i=1

ξ(i)hδ(X(i)) ≤ 1
n

n∑
i=1
|ξ(i)||h(X(i))− hδ(X(i))| ≤ δ.

By the same argument, it holds that

− 1
n

n∑
i=1

h2(X(i)) + 1
n

n∑
i=1

h2
δ(X(i)) ≤ 8B2δ.

With the help of the above two inequalities, we have

Eξ

[
sup
h∈H

3
n

n∑
i=1

ξ(i)h(X(i))− 1
4B2n

n∑
i=1

h2(X(i))
]

≤ Eξ

[
max

hδ∈Hδ

3
n

n∑
i=1

ξ(i)hδ(X(i))− 1
4B2n

n∑
i=1

h2
δ(X(i))

]
+ 5δ.(G.2)

Observe that {ξ(i)hδ(X(i))}ni=1 is a set of n i.i.d. random variables with

−hδ(X(i)) ≤ ξ(i)hδ(X(i)) ≤ hδ(X(i)), 1 ≤ i ≤ n.

Then it follows Hoeffding’s inequality (Mohri et al., 2018, Theorem D.2) that

Prξ

{ 3
n

n∑
i=1

ξ(i)hδ(X(i)) > t+ 1
4B2n

n∑
i=1

h2
δ(X(i))

}

= Prξ

{ n∑
i=1

ξ(i)hδ(X(i)) > nt

3 + 1
12B2

n∑
i=1

h2
δ(t(i), X(i)

t )
}

≤ exp
(
−

(nt
3 + 1

12B2
∑n

i=1 h
2
δ(t(i), X(i)

t ))2

2
∑n

i=1 h
2
δ(t(i), X(i)

t )

)
≤ exp

(
− nt

18B2

)
,(G.3)

where the first inequality follows from Hoeffding’s inequality (Mohri et al., 2018, Theorem

D.2), and the second inequality is due to (a + b)2/b ≤ 4a for each a > 0 and b ∈ R. As a

consequence, for each A > 0,

Eξ

[
max

hδ∈Hδ

3
n

n∑
i=1

ξ(i)hδ(X(i))− 1
4B2n

n∑
i=1

h2
δ(X(i))

]

=
∫ ∞

0
Prξ

{
max

hδ∈Hδ

3
n

n∑
i=1

ξ(i)hδ(X(i))− 1
4B2n

n∑
i=1

h2
δ(X(i)) > t

}
dt

≤ A+ |Hδ|
∫ ∞

T
exp

(
− nt

18B2

)
dt = A+ 18B2

n
|Hδ| exp

(
− nA

18B2

)
,

where the inequality is owing to (G.3). Letting A = 18B2 log |Hδ|n−1
gives that

(G.4) Eξ

[
max

hδ∈Hδ

3
n

n∑
i=1

ξ(i)hδ(X(i))− 1
4B2n

n∑
i=1

h2
δ(X(i))

]
≤ 18B2 log |Hδ|+ 1

n
.

It remains to estimate the covering number |Hδ| = N(δ,H , L∞(D)). Noticing that

|h(x)− h′(x)| = |(f(x)− f∗(x))2 − (f ′(x)− f∗(x))2| ≤ 4B|f(x)− f ′(x)|,
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we obtain that for n ≥ VCdim(F ),

(G.5) logN(δ,H , L∞(D)) ≤ logN
( δ

4B ,F , L∞(D)
)
≤ VCdim(F ) log

(4eB2n

δ

)
,

where the first and last inequalities follows from Lemmas A.10 and A.11, respectively.

Combining (G.1), (G.2), (G.4) and (G.5), we have

ED

[
sup
f∈F

R(f̂)− 2R̂n(f̂)
]
≤ inf

δ>0

{
36B2 VCdim(F )

n
log

(4eB2n

δ

)
+ 5δ

}
.

Substituting δ = 4B2/n into the above inequality completes the proof. □

Lemma G.2. Suppose that |f∗(x)| ≤ B for each x ∈ X . Let F be a set of functions mapping from
X to [−B,B]. Let {ε(i)}ni=1 be a set of independent σ2-sub-Gaussian random variables. Then it
follows that for each n ≥ VCdim(F ),

E(D,ε)
[ 1
n

n∑
i=1

ε(i)f̂(X(i))
]
≤ 1

4E(D,ε)
[
R̂(f̂)

]
+ C(B2 + σ2)VCdim(F )

n log−1 n
,

where C is an absolute constant.

This proof uses a technique similar to the proof of (Schmidt-Hieber, 2020, Lemma 4).

Proof of Lemma G.2. Let δ ∈ (0, B) and let Fδ be a L∞(D) δ-cover of F with |Fδ| =
N(δ,F , L∞(D)). Then there exists f̂δ ∈ Fδ, such that

max
1≤i≤n

|f̂(X(i))− f̂δ(X(i))| ≤ δ.

Then it follows from Hölder’s inequality that

(G.6) E(D,ε)
[ 1
n

n∑
i=1

ε(i)(f̂(X(i))− f̂δ(X(i)))
]
≤ δE(D,ε)

[ 1
n

n∑
i=1
|ε(i)|

]
≤ δσ,

where we used the fact that {ε(i)}ni=1 are a set of σ2
-sub-Gaussian random variables. Addi-

tionally, according to the triangular inequality, we have

(G.7) R̂1/2
n (f̂δ)− R̂1/2

n (f̂) ≤
( 1
n

n∑
i=1

(f̂δ(X(i))− f̂(X(i)))2
)1/2

≤ δ.

Consequently, we have

E(D,ε)
[ 1
n

n∑
i=1

ε(i)f̂(X(i))
]

= E(D,ε)
[ 1
n

n∑
i=1

ε(i)(f̂(X(i))− f̂δ(X(i)) + f̂δ(X(i))− f∗(X(i)))
]

≤ E(D,ε)
[ 1
n

n∑
i=1

ε(i)(f̂δ(X(i))− f∗(X(i)))
]

+ δσ

≤ 1√
n
E(D,ε)

[(
R̂1/2

n (f̂) + δ
) n∑

i=1

ε(i)(f̂δ(X(i))− f∗(X(i)))
√
nR̂

1/2
n (f̂δ)

]
+ δσ

≤ 1√
n

(
E

1/2
(D,ε)

[
R̂n(f̂)

]
+ δ

)
E

1/2
(D,ε)

[
ψ2(f̂δ)

]
+ δσ

≤ 1
4E(D,ε)

[
R̂n(f̂)

]
+ 2
n
E(D,ε)

[
ψ2(f̂δ)

]
+ 1

4δ
2 + δσ,(G.8)
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where ψ(f̂δ) is defined as

ψ(f̂δ) =
n∑

i=1

f̂δ(X(i))− f∗(X(i))
√
nR̂

1/2
n (f̂δ)

ε(i).

Here the first inequality follows from (G.6), the second inequality holds from (G.7), the

third inequality is due to Cauchy-Schwarz inequality, and the last inequality is owing to the

weighted AM-GM inequality ab ≤ a/4 + b for each a, b ∈ R.

Observe that for each fixed function f : Rd → R, the random variable ψ(f) is sub-

Gaussian with variance proxy σ2
conditioning on D = {X(i)}ni=1. Then it follows that

(G.9) Eε
[
ψ2(f̂δ)

]
≤ Eε

[
max

fδ∈Fδ

ψ2(fδ)
]
≤ 4σ2(log |Fδ|+ 1).

We now estimate the covering number |Fδ| = N(δ,F , L∞(D)). It follows from Lemma A.11

that for n ≥ VCdim(F ),

(G.10) logN(δ,F , L∞(D)) ≤ VCdim(F ) log
(eBn

δ

)
.

Combining (G.8), (G.9) and (G.10), and setting δ = B/n complete the proof. □

Appendix H. Approximation by Deep Neural Networks with Lipschitz Constraint

The approximation error analysis for deep neural networks has been investigated by Yarot-

sky (2017, 2018), Yarotsky and Zhevnerchuk (2020), Shen et al. (2019), Shen (2020), Lu et al.

(2021), Petersen and Voigtlaender (2018), Jiao et al. (2023a), Duan et al. (2022). However,

limited work has been done for deep neural networks with Lipschitz constraint Huang et al.

(2022), Chen et al. (2022), Jiao et al. (2023b), Ding et al. (2024).

This proof is based on the proof of (Yarotsky, 2017, Theorem 1). The ReLU activation

function is defined as ReLU(x) = max{0, x}, and the ReQU activation function is defined

as the squared ReLU function ReQU(x) = (max{0, x})2
.

Lemma H.1. The maximum or minimum of two inputs can be implemented by a ReLU neural
network with 1 hidden layer and 7 non-zero parameters.

Proof of Lemma H.1. According to the equality a = ReLU(a)− ReLU(−a), the identity map-

ping can be implemented by a ReLU neural network with 1 hidden layer and 4 non-zero

parameters. We also notice that

max{a, b} = a+ ReLU(b− a) = ReLU(a)− ReLU(−a) + ReLU(b− a),

which means that the maximum of two inputs can be implemented by 7 non-zero parameters.

By a same argument, with the aid of equality min{a, b} = a−ReLU(a− b), we can obtain a

same result for the minimum of two inputs. This completes the proof. □

Lemma H.2. The product of two inputs can be implement by a ReQU neural network with 1 hidden
layer and 12 non-zero parameters.
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Proof of Lemma H.2. According to (Li et al., 2019, Lemma 2.1), the following identities hold:

x1x2 = 1
4w

T
3 ReQU(w1x1 + w2x2),

where w1 = (1,−1, 1,−1)T
, w2 = (1,−1,−1, 1)T

and w3 = (1, 1,−1,−1)T
, which completes

the proof. □

Lemma H.3. The product of p inputs can be implement by a ReQU neural network with ⌈log2 p⌉
hidden layers and 6(p+ 1) non-zero parameters.

Proof of Lemma H.3. Define the augmented input vector (x1, . . . , xp, xp+1, . . . , xn) where n =
2⌈log2 p⌉

and xi = 1 for p + 1 ≤ i ≤ n. Observe that

∏p
i=1 xi =

∏n
i=1 xi. According to

Lemma H.2, the mapping (x1, . . . , xn) → (x1x2, . . . , xn−1xn) ∈ Rn/2
can be implemented

by a ReQU neural network with 1 hidden layer and 6n non-zero parameters. By a same

argument, we can construct a ReQU neural network with 1 hidden layer and 3n non-zero

parameters, which maps (x1x2, . . . , xn−1xn) to (x1x2x3x4, . . . , xn−3xn−2xn−1xn) ∈ Rn/4
. By

induction on n, the number of layers is given as ⌈log2 p⌉, and the total number of non-zero

parameters is given by

12× (1 + 2 + 22 + . . .+ 2⌈log2 p⌉−1) ≤ 6(p+ 1).

This completes the proof. □

Lemma H.4. The univariate trapezoid function

(H.1) ψ(z) =


1, |z| < 1,

2− |z|, 1 ≤ |z| ≤ 2,

0, 2 < |z|,

can be implement by a ReLU neural network with 3 hidden layers and 14 non-zero parameters.

Proof of Lemma H.4. We first implement the following hat-function by ReLU neural network

ψ̃(z) =

2− |z|, |z| ≤ 2,

0, 2 < |z|.

Noticing that ψ̃(z) = min{ReLU(z + 2),ReLU(−z + 2)}, by applying Lemma H.1, we find

that ψ̃ can be implemented by a ReLU neural network with 2 hidden layers and 11 non-

zero parameters. Further, according to the equality ψ(z) = min{1, ψ̃(z)}, the univariate

trapezoid function ψ can be implemented by a ReLU neural network with 3 hidden layers

and 14 non-zero parameters. This completes the proof. □

Lemma H.5 (Approximation error). Let p ∈ N+, and let {Nk}pk=1 be a set of positive integer.
Set the deep neural network class N(L, S) as L = ⌈log2 p⌉+ 3 and S = (22p+ 6)

∏p
k=1(Nk + 1).

Then for each u∗ ∈W 1,∞([0, 1]p), there exists a deep neural network u ∈ N(L, S) such that

∥u− u∗∥L∞([0,1]p) ≤ 2p
p∑

k=1

1
Nk
∥∂ku

∗∥L∞(X ).
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Further, it holds that the following holds for each 1 ≤ k ≤ p:

∥u∥L∞([0,1]p) = ∥u∗∥L∞([0,1]p) and ∥∂ku∥L∞([0,1]p) ≤ 3∥∂ku
∗∥L∞([0,1]p).

Proof of Lemma H.5. The proof is divided into three steps. In the first step, we approximate

the target function based on a partition of unity and the degree-0 Taylor expansion. Then we

implement this piece-wise linear function using deep neural network exactly in the second

step. Finally, in the last step, we estimate the Lipschitz constant of the deep neural network.

Step 1. Approximate the target function by a piecewise linear function.
Consider a partition of unity formed by a grid of

∏p
k=1(Nk + 1) functions ϕm on the

domain [0, 1]p:

(H.2)

∑
m

ϕm(x) ≡ 1, x ∈ [0, 1]p,

where the multi-index m is defined as m = (m1, . . . ,mp)T
with mk ∈ {0, . . . , Nk}, and the

function ϕm is defined as the product

(H.3) ϕm(x) =
p∏

k=1
ψ

(
3Nk

(
xk −

mk

Nk

))
.

Here ψ is the univariate trapezoid function defined as (H.1). It is noticeable that for eachm,

(H.4) sup
z∈[0,1]

|ψ(z)| = 1, sup
x∈[0,1]p

|ϕm(x)| = 1,

and

(H.5) supp(ϕm) ⊆
{
x ∈ [0, 1]p :

∣∣∣xk −
mk

Nk

∣∣∣ ≤ 2
3Nk

, 1 ≤ k ≤ p
}
.

Now define a piecewise linear approximation to u∗
by

(H.6) u(x) =
∑
m

ϕm(x)u∗
(m1
N1

, . . . ,
mp

Np

)
.

Then it follows that

|u∗(x)− u(x)| ≤
∑
m

∣∣∣ϕm(x)
(
u∗(x)− u∗

(m1
N1

, . . . ,
mp

Np

))∣∣∣
≤

∑
m

∣∣∣u∗(x)− u∗
(m1
N1

, . . . ,
mp

Np

)∣∣∣1{
m :

∣∣∣xk −
mk

Nk

∣∣∣ ≤ 2
3Nk

, k ∈ [p]
}

≤ 2p max
m

∣∣∣u∗(x)− u∗
(m1
N1

, . . . ,
mp

Np

)∣∣∣1{
m :

∣∣∣xk −
mk

Nk

∣∣∣ ≤ 2
3Nk

, k ∈ [p]
}

≤ 2p max
m

p∑
k=1

ess sup
x∈[0,1]p

|∂ku
∗(x)|

∣∣∣xk −
mk

Nk

∣∣∣1{
m :

∣∣∣xk −
mk

Nk

∣∣∣ ≤ 2
3Nk

, k ∈ [p]
}

≤ 2p
p∑

k=1
ess sup
x∈[0,1]p

|∂ku
∗(x)| 2

3Nk
,

where the first inequality follows from the triangular inequality, the second inequality is

due to (H.4) and (H.5), the third inequality used the observation that any x ∈ [0, 1]p belongs

to the support of at most 2d
functions ϕm, the forth inequality used Taylor’s theorem of
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degree-0, and the last inequality holds from Hölder’s inequality. Consequently, we obtain

the following inequality

∥u− u∗∥L∞([0,1]p) ≤ 2p
p∑

k=1

1
Nk
∥∂ku

∗∥L∞([0,1]p).

Step 2. Implement the piecewise linear function by a deep neural network.
In this step, we implement the piececwise linear approximation (H.6) by a deep neural

network. Using Lemmas H.3 and H.4, for each m, the function ϕm defined as (H.3) can be

implemented by a deep neural network with ⌈log2 p⌉+ 3 layers and 16p+ 6(p+ 1) = 22p+ 6
non-zero parameters. Since u defined in (H.6) is a linear combination of

∏p
k=1(Nk + 1)

functions ϕm, it can be implemented by a deep neural network with ⌈log2 p⌉+ 3 layers and

(22p+ 6)
∏p

k=1(Nk + 1) non-zero parameters.

Step 3. Compute the Lipschitz constant of the deep neural network.
According to Step 2, the piecewise linear approximation u can be implemented by a deep

neural network with no error. Therefore, it suffices to compute the Lipschitz constant of u

in (H.6). Taking derivative on both sides of (H.6) with respect to xk yields

∂ku(x) =
∑
m

u∗
(m1
N1

, . . . ,
mp

Np

)
∂kϕm(x)

=
∑
m

u∗
(m1
N1

, . . . ,
mp

Np

)
Ak(m)∂kψ

(
3Nk

(
xk −

mk

Nk

))
=

∑
m

u∗
(m1
N1

, . . . ,
mp

Np

)
Ak(m)∂kψ

(
3Nk

(
xk −

mk

Nk

))
1

{
m :

∣∣∣xk −
mk

Nk

∣∣∣ ≤ 2
3Nk

}
,(H.7)

where the constant is given as

Ak(m) =
∏
ℓ ̸=k

ψ
(
3Nℓ

(
xℓ −

mℓ

Nℓ

))
1

{
m :

∣∣∣xℓ −
mℓ

Nℓ

∣∣∣ ≤ 2
3Nℓ

, ℓ ̸= k
}
.

It is evident that 0 ≤ Ak(m) ≤ 1 for each 1 ≤ k ≤ p and m.

We next estimate (H.7) in the following cases.

(i) If there exists m∗
k ∈ {1, . . . , Nk} such that |xk −

m∗
k

Nk
| ≤ 1

3Nk
, then

∂ku(x) = u∗
(m1
N1

, . . . ,
m∗

k

Nk
, . . . ,

mp

Np

)
Ak(m∗)∂kψ

(
3Nk

(
xk −

m∗
k

Nk

))
= 0,

where m∗ = (m1, . . . ,m
∗
k, . . . ,mp)T

.
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(ii) If there exists m∗
k ∈ {1, . . . , Nk} such that

m∗
k

Nk
+ 1

3Nk
≤ xk ≤

m∗
k

Nk
+ 2

3Nk
, then

∂ku(x) = u∗
(m1
N1

, . . . ,
m∗

k

Nk
, . . . ,

mp

Np

)
Ak(m∗)∂kψ

(
3Nk

(
xk −

m∗
k

Nk

))
+ u∗

(m1
N1

, . . . ,
m∗

k + 1
Nk

, . . . ,
mp

Np

)
Ak(m∗

+)∂kψ
(
3Nk

(
xk −

m∗
k + 1
Nk

))
= −3u∗

(m1
N1

, . . . ,
m∗

k

Nk
, . . . ,

mp

Np

)
Ak(m∗)Nk

+ 3u∗
(m1
N1

, . . . ,
m∗

k + 1
Nk

, . . . ,
mp

Np

)
Ak(m∗

+)Nk

≤ 3Nk

∣∣∣u∗
(m1
N1

, . . . ,
m∗

k + 1
Nk

, . . . ,
mp

Np

)
− u∗

(m1
N1

, . . . ,
m∗

k

Nk
, . . . ,

mp

Np

)∣∣∣
≤ 3 ess sup

x∈[0,1]p
|∂ku

∗(x)|,

wherem∗
+ = (m1, . . . ,m

∗
k +1, . . . ,mp)T

, the first inequality follows from the fact that

|Ak(m)| ≤ 1, and the last inequality is due to Taylor’s theorem.

(iii) If there existsm∗
k ∈ {1, . . . , Nk} such that

m∗
k

Nk
− 2

3Nk
≤ xk ≤

m∗
k

Nk
− 1

3Nk
, then by a same

argument, we have

∂ku(x) ≤ 3Nk

∣∣∣u∗
(m1
N1

, . . . ,
m∗

k

Nk
, . . . ,

mp

Np

)
− u∗

(m1
N1

, . . . ,
m∗

k − 1
Nk

, . . . ,
mp

Np

)∣∣∣
≤ 3 ess sup

x∈[0,1]p
|∂ku

∗(x)|.

Combining the three cases above, we obtain the following inequality

∥∂ku∥L∞([0,1]p) ≤ 3∥∂ku
∗∥L∞([0,1]p), 1 ≤ k ≤ p.

This completes the proof. □

We have investigated the approximation error of a target function on the hypercube [0, 1]p

in Lemma H.5. In the following corollary, we extend our analysis to target functions on

general bounded domain [0, T ]× [−R,R]d.

Corollary H.6. Let p ∈N+, X =
∏p

k=1[ai, bi], and let {Nk}pk=1 be a set of positive integer. Set the
deep neural network class N(L, S) as L = ⌈log2 p⌉ + 3 and S = (22p + 6)

∏p
k=1(Nk + 1). Then

for each u∗ ∈W 1,∞(X ), there exists a deep neural network u ∈ N(L, S) such that

∥u− u∗∥L∞(X ) ≤ 2p
p∑

k=1

bk − ak

Nk
∥∂ku

∗∥L∞(X ).

Further, it holds that for each 1 ≤ k ≤ p:

∥u∥L∞(X ) = ∥u∗∥L∞(X ) and ∥∂ku∥L∞(X ) ≤ 3∥∂ku
∗∥L∞(X ).

Proof of Corollary H.6. We first define a variable transformation on u∗ ∈W 1,∞(X ) as

ϕ : W 1,∞(X )→W 1,∞([0, 1]p)

u∗(x) 7→ (ϕ ◦ u∗)(x′) = u∗(a+ (b− a)x′),
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where (b− a)x′ = ((bk − ak)x′
k)p

k=1 ∈ Rp
. Then it is noticeable that

ess sup
x′∈[0,1]p

∣∣∣∂(ϕ ◦ u∗)
∂x′

k

(x′)
∣∣∣ = (bk − ak) ess sup

x∈X

∣∣∣∂u∗

∂xk
(x)

∣∣∣.
Set the deep neural network classN(L, S) asL = ⌈log2 p⌉+3 andS = (22p+6)

∏p
k=1(Nk +1).

According to Lemma H.5, there exists a neural network u ∈ N(L, S) such that

|u(x′)− (ϕ ◦ u∗)(x′)| ≤ 2p
p∑

k=1
ess sup
x′∈[0,1]p

∣∣∣∂(ϕ ◦ u∗)
∂x′

k

(x′)
∣∣∣ 1
Nk

≤ 2p
p∑

k=1

bk − ak

Nk
ess sup

x∈X

∣∣∣∂u∗

∂xk
(x)

∣∣∣,(H.8)

and for each 1 ≤ k ≤ p, the following inequality holds:

(H.9) ess sup
x′∈[0,1]p

∣∣∣ ∂u
∂x′

k

(x′)
∣∣∣ ≤ 3 ess sup

x′∈[0,1]p

∣∣∣∂(ϕ ◦ u∗)
∂x′

k

(x′)
∣∣∣ = 3(bk − ak) ess sup

x∈X

∣∣∣∂u∗

∂xk
(x)

∣∣∣.
We next define the inverse transform on u ∈W 1,∞([0, 1]p) as

ψ : W 1,∞([0, 1]p)→W 1,∞(X )

u(x′) 7→ (ψ ◦ u)(x) = u
(x′ − a
b− a

)
,

where (x′ − a)/(b− a) = ((x′
k − ak)/(bk − ak))p

k=1 ∈ Rp
. It follows from (H.9) that

ess sup
x∈X

∣∣∣∂(ψ ◦ u)
∂xk

(x)
∣∣∣ = 1

bk − ak
ess sup
x′∈[0,1]p

∣∣∣ ∂u
∂x′

k

(x′)
∣∣∣ ≤ 3 ess sup

x∈X

∣∣∣∂u∗

∂xk
(x)

∣∣∣,
for each 1 ≤ k ≤ p. Then composing ψ on both sides of (H.8) yields the desired inequality.

□

Appendix I. Denoiser parameterization

In practice, we parameterize the network Dθ(t, x) following Karras et al. (2022):

(I.1) Dθ(t, x) = c
skip

(t)x+ cout(t)Fθ (cnoise(t), cin(t)x) ,

where Fθ is the neural network to be trained, c
skip

(t) scale the skip connection, cin(t) and

cout(t) scale the input and output of Fθ, and cnoise(t) scales time t.

Now (4.1) becomes

L(F ) =
∫ 1

0
EX0EX1

[
ω(t)∥c

skip
(t)Xt + cout(t)F (cnoise(t), cin(t)Xt)− x1∥2

]
dt(I.2)

=
∫ 1

0
EX0EX1

[
ω(t)c2

out
(t)∥F (cnoise(t), cin(t)Xt)−

X1 − cskip
(t)Xt

cout(t)
∥2

]
dt

=
∫ 1

0
EX0Ez

[
λ(t)∥F

pred
− Ftarget∥2

]
dt,

where λ(t) = ω(t)c2
out

(t), F
pred

= F (cnoise(t), cin(t)Xt) and Ftarget = X1−c
skip

(t)Xt

cout(t) .
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Let σ denote the standard deviation of µ1. We now design cin so that the spatial inputs of

F has unit variance.

Var[cin(t)xt] = 1,

⇔cin(t) =
√

1
Var[Xt]

=
√

1
α2

tσ
2 + β2

t

.

We then design cout so that the Ftarget has unit variance.

Var[
X1 − cskip

(t)Xt

cout(t)
] = 1,

⇔cout(t) =
√

Var[(1− αtcskip
(t))X1 − cskip

(t)βtz],

⇔cout(t) =
√

(1− αtcskip
(t))2σ2 + c

skip
(t)2β2

t .(I.3)

We then design c
skip

that minimizes cout so that the errors of F are amplified as little as

possible. Let
∂c2

out
(t)

∂c
skip

(t) = 0, we obtain

− αt(1− αtcskip
(t))σ2 + β2

t cskip
(t) = 0,

⇔c
skip

(t) = αtσ
2

α2
tσ

2 + β2
t

.(I.4)

We can check that (I.4) is indeed the minima of cout. Meanwhile, (I.3) yields

cout(t) = βtσ√
α2

tσ
2 + β2

t

.

We can then design ω(t) so that λ(t) = 1 uniformly on [0, 1].

ω(t) = 1
c2

out
(t)

= α2
tσ

2 + β2
t

β2
t σ

2 .

We conclude the form of coefficients in Table 5.

Table 5. Denoiser parameterization.

function requirements form

cnoise(t) - free choice

cin(t) Var[cin(t)Xt] = 1
√

1
α2

t σ2+β2
t

cout(t) Var[X1−c
skip

(t)Xt

cout(t) ] = 1 βtσ√
α2

t σ2+β2
t

c
skip

(t) ∂c2
out

(t)
∂c

skip
(t) = 0 αtσ2

α2
t σ2+β2

t

ω(t) λ(t) = 1 α2
t σ2+β2

t

β2
t σ2

Now (I.2) can be used as the working denoiser matching loss.
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Appendix J. Extra experiment details

We use DDPM++ in as the denoiser network architecture, and embed another temporal

input into it to construct the characteristic generator as Kim et al. (2024) did. We use Rectified

Adam (RAdam) as the optimizer and set learning rate to 0.001 on MNIST and 0.0001 on

CIFAR-10. In practice, we initialize DS from the pre-trained DT for fast convergences.

Inspired by Esser et al. (2021), Kim et al. (2024), we adaptively balance the the characteristic

matching loss and the denoiser matching loss. For characteristic matching on image data,

we use the Learned Perceptual Image Patch Similarity (LPIPS) metric instead of L2
-norm

to measure distance Zhang et al. (2018). We use exponential moving average (EMA) with

rate 0.999 on MNIST and 0.9999 on CIFAR-10. For the choice of u in (4.8), we apply a

weighted random strategy which is more likely to choose a long range interval [t, u] to

ensure the precision of the teacher solver, as Kim et al. (2024) did, For each batch, we run

the teacher solver with at most 19 NFE. On MNIST, we calculate FID in original pixel space.

On CIFAR-10, we use Inceptionv3 to extract features (dimension=2048) of images first and

then calculate FID in the feature space.
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