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A B S T R A C T

In this paper, we introduce CDII-PINNs, a computationally efficient method for solving CDII
using PINNs in the framework of Tikhonov regularization. This method constructs a physics-
informed loss function by merging the regularized least-squares output functional with an
underlying differential equation, which describes the relationship between the conductivity and
voltage. A pair of neural networks representing the conductivity and voltage, respectively, are
coupled by this loss function. Then, minimizing the loss function provides a reconstruction.
A rigorous theoretical guarantee is provided. We give an error analysis for CDII-PINNs and
establish a convergence rate, based on prior selected neural network parameters in terms of
the number of samples. The numerical simulations demonstrate that CDII-PINNs are efficient,
accurate and robust to noise levels ranging from 1% to 20%.

1. Introduction

Electrical Impedance Tomography (EIT) is a medical imaging technique to recover the conductivity value of soft tissue from pairs
of flux/voltage on its boundary. However, the problem of reconstructing the electrical conductivity distribution is severely ill-posed,
which is very sensitive to noise and measurement errors. To avoid the drawback of EIT, people consider other conductivity imaging
techniques that combine electrical impedance tomography (EIT) and magnetic resonance imaging (MRI). In this work, we consider
the current density impedance imaging (CDII), one of the medical imaging techniques, which aims to image the current density
distribution within a conductive medium [1]. CDII has potential applications in a variety of fields, including non-destructive testing,
material science, and biomedical imaging. For example, it can be used in non-destructive testing of concrete to detect cracks and
voids, in material science to study the microstructure of metals, and in biomedical imaging to detect tumors and other abnormalities
in tissues.

Theoretical results on the uniqueness of the recovery and conditional stability of CDII have been studied in [1–4], respectively.
Numerical reconstruction algorithms have been extensively studied, including the level set method [5,6], the weighted least-
gradient method [1], and methods based on linearized reconstruction [7]. These algorithms have been shown to be effective in
reconstructing the current density distribution from measured data. The finite element methods (FEM), regarded as traditional
discretization techniques, are utilized to discretize the provided regularized functional. However, FEM faces significant challenges
when confronted with highly noisy problems. In this work we propose a neural network-based method by combining Physics-
Informed Neural Networks (PINNs) with the Tikhonov regularization. Compared to Galerkin approximation, our approach requires
only a stochastic gradient descent solver and have been numerically shown to be very robust against measurement noise.

In recent years, Physics-Informed Neural Networks (PINNs) [8] have gained a lot of attention as a residual-based deep learning
method for solving both forward and inverse problems in science and engineering. In [8], the authors explored numerically the
recovery of constant functions in PDEs using PINNs. Building on this work, we propose to use PINNs to identify the parameters in
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CDII by constructing a residual-based loss function that involves two neural networks. These networks are used to simultaneously
approximate the unknown conductivity coefficient function and the underlying solution. For solving inverse problems in PDEs, other
deep learning methods have also been proposed, such as those in [9–12]. Here, we highlight the main differences between these
methods and ours. In [9], a min–max loss function is induced by the weak form of the elliptic equations. This method requires
an additional network to approximate the dual variable, which can make the training process more challenging than ours. On the
other hand, in [10], the authors propose to handle the CDII problem by solving a forward problem using deep learning under
the framework of weighted least-gradient [1]. In the paper [11], the authors investigate the inverse source problem within the
framework of PINNs. However, their analysis differs significantly from ours, which focuses on consistency from the perspective of
statistical learning theory. A related work, [12], considers the error analysis of PINNs for certain inverse problems. Nevertheless,
this study does not provide guidance on how to choose the neural network parameters to ensure consistency.

Our main contributions are as follows.

• We introduce CDII-PINNs, a computationally efficient method for solving CDII using PINNs in the framework of nonparametric
statistical learning [13]. Our numerical simulations demonstrate that CDII-PINNs achieve high accuracy and robustness to noise
levels ranging from 1% to 20%.

• We present a comprehensive error analysis for CDII-PINNs, along with a prior rule for selecting appropriate neural network
parameters, such as width and depth, based on the number of samples. This approach ensures that the estimation error is
consistent and can be controlled to achieve the desired level of precision. To the best of our knowledge, this is the first
theoretical result of its kind for PINNs in the context of inverse problems.

The remainder of the paper is organized as follows. Our CDII-PINNs and their convergence analysis are presented in Section 2 and
ection 3, respectively. In Section 4, we provide numerical simulations. The conclusions and main proofs are presented in Section 5
nd Appendix, respectively.

. Methodology and preliminary

.1. Problem formulation

Let 𝑈 ⊆ R𝑑 (𝑑 > 1) denote a bounded non-empty 𝐶∞-domain, referring to the space occupied by the object. Without loss of
generality, we assume 𝑈 ⊆ (0, 1)𝑑 . The electric potential or voltage 𝑢 in the interior of the domain is governed by the following
econd-order elliptic equation

∇ ⋅ (𝛾∇𝑢) = 0 in 𝑈, (2.1)

corresponding to the unknown conductivity coefficient 𝛾 ∈ 𝐿∞(𝑈 ). In the idealistic situation, one assumes that the potential is
easured everywhere on the boundary, that is, the Dirichlet trace

𝑢 = 𝑓 on 𝜕𝑈. (2.2)

he govern equation Eq. (2.1) together with the observations on the boundary Eq. (2.2) is a well-used mathematical model for EIT,
alled current density impedance imaging (CDII) [14]. Denote 𝐽 = −𝛾∇𝑢 the internal current density vector. In CDII, the magnitude
f the current density field 𝑎(𝑥) = |𝐽 (𝑥)| is observed on the whole of 𝑈 . The goal is to determinate the conductivity distribution
rom the noisy measurement data. Moreover, we assume the conductivity 𝛾 belongs to the admissible set  defined as

 = {𝛾 ∈ 𝐿∞(𝑈 ) ∶ 𝛾0 ≤ 𝛾(𝑥) ≤ 𝛾1 a.e. in 𝑈}, (2.3)

ith 0 < 𝛾0 < 𝛾1 <∞.
Given a conductivity function 𝛾 ∈ , denote by 𝑢𝛾 the solution of Eqs. (2.1) and (2.2). Let us define a nonlinear operator

∶ 𝛾 ↦ 𝛾|∇𝑢𝛾 |, and consider an additive 𝛿2-sub-Gaussian noise model

𝑌 = [𝛾†](𝑋) + 𝜉, 𝜉 ∼i.i.d. 𝗌𝗎𝖻𝖦(0, 𝛿2), (2.4)

here the measurement noise 𝜉 is independent of 𝑋 and 𝛾†. It is straightforward that E(𝑋,𝑌 )[(𝑌 − [𝛾†](𝑋))2] = 𝛿2. In this paper, we
ake no distinction between notations 𝑌 and 𝑎𝛿 .

.2. Neural networks

A neural network 𝜙 ∶ R𝑁0 → R𝑁+1 is a function defined by

𝜙(𝑥) = 𝑇(𝜚(𝑇−1(⋯ 𝜚(𝑇0(𝑥))⋯))),

where the activation function 𝜚 is applied component-wisely and 𝑇𝓁(𝑥) ∶= 𝐴𝓁𝑥+ 𝑏𝓁 is an affine transformation with 𝐴𝓁 ∈ R𝑁𝓁+1×𝑁𝓁

and 𝑏𝓁 ∈ R𝑁𝓁 for 𝓁 = 0,…. In this paper, we consider the case 𝑁0 = 𝑑 and 𝑁+1 = 1. The number  the depth of the neural
network. Denote 𝑖 =

∑𝑖
𝓁=1(‖𝐴𝓁‖0 + ‖𝑏𝓁‖0) for 𝑖 = 1,… ,, where ‖ ⋅ ‖𝓁0 is the number of nonzero entries for a given vector. Hence

𝑖 represents the nonzero weights on the first 𝑖-layers and then  =  is the total number of nonzero weights.
We define the neural network class 𝜚(, ,) as the collection of 𝜚-neural networks with at most  layers and at most 

nonzero weights and each weight are bounded by .
2
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2.3. CDII-PINNs

By Tikhonov regularization, we can obtain a reconstruction by solving the optimization problem

min
𝛾∈

{

 (𝛾) ∶= |𝑈 |E(𝑋,𝑌 )
[

(𝑌 − [𝛾](𝑋))2
]

+ 𝛼𝜓(𝛾)
}

, (2.5)

where 𝜓 is the regularization functional. Observe that Eq. (2.5) is equivalent to a optimal control problem

min
𝛾,𝑢

𝐽 (𝛾, 𝑢) = |𝑈 |E(𝑋,𝑌 )
[

(𝑌 − [𝛾](𝑋))2
]

+ 𝛼𝜓(𝛾), subject to Eqs. (2.1)–(2.3),

which can be converted to an unconstrained minimization problem by the penalty method

min
𝛾,𝑢

𝐿(𝛾, 𝑢) ∶= 𝐽 (𝛾, 𝑢) + 𝐺(𝛾, 𝑢). (2.6)

For the sake of simplicity, we choose the penalty term as

𝐺(𝛾, 𝑢) = ‖∇ ⋅ (𝛾∇𝑢)‖2
𝐿2(𝑈 )

+ ‖𝑇 𝑢 − 𝑓‖2
𝐿2(𝜕𝑈 )

,

which is referred as the physic-informed loss function [8] for solving the constraint PDEs Eqs. (2.1) and (2.2) given 𝛾. Furthermore,
since

E(𝑋,𝑌 )
[

(𝑌 − [𝛾](𝑋))2
]

= ‖[𝛾†] − [𝛾]‖2
𝐿2(𝑈 )

+ 𝛿2,

it follows that 𝐽 (𝛾†, 𝑢†) ≤ 𝐽 (𝛾, 𝑢) for each (𝛾, 𝑢) if 𝛼 = 0. In addition, 𝐺(𝛾, 𝑢) ≥ 0 for any (𝛾, 𝑢) and 𝐺(𝛾†, 𝑢†) = 0, which means that for
𝛼 = 0

(𝛾†, 𝑢†) ∈ argmin
𝛾,𝑢

𝐿(𝛾, 𝑢).

However, in inverse problems, the distribution of (𝑋, 𝑌 ) is typically unknown and only a random sample 𝑆 = {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1∪{�̄�𝑖}𝑛𝑖=1
is available, where {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 are 𝑛 independent copies of (𝑋, 𝑌 ) and {�̄�𝑖}𝑛𝑖=1 are 𝑛 independent random variables drawn from the
uniform distribution on 𝜕𝑈 . Based on the measurement data, we employ the Monte Carlo method to discretize the population risk
Eq. (2.6) and yield the empirical risk

𝐿𝑛(𝛾, 𝑢) ∶= 𝐽𝑛(𝛾, 𝑢) + 𝐺𝑛(𝛾, 𝑢), (2.7)

where the empirical objective functional and penalty term is given by

𝐽𝑛(𝛾, 𝑢) =
1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝛾|∇𝑢|(𝑋𝑖))2 + 𝛼𝜓𝑛(𝛾), and

𝐺𝑛(𝛾, 𝑢) =
1
𝑛

𝑛
∑

𝑖=1
(∇ ⋅ (𝛾∇𝑢)(𝑋𝑖))2 + (𝑇 𝑢(�̄�𝑖) − 𝑓 (�̄�𝑖))2,

respectively. Here 𝜓𝑛(𝛾) is a discrete version of 𝜓(𝛾), satisfying E𝑆𝜓𝑛(𝛾) = 𝜓(𝛾) for any fixed function 𝛾 ∶ 𝑈 → R.
Finally, we represent the conductivity 𝛾 and voltage 𝑢 by two dependent neural networks, respectively and then substitute them

into the empirical risk Eq. (2.7). An estimator of (𝛾†, 𝑢†) can be obtained by empirical risk minimization, which reads

(�̂�𝑛, �̂�𝑛) ∈ argmin
(𝛾,𝑢)∈𝛾×𝑢

𝐿𝑛(𝛾, 𝑢) ∶= 𝐽𝑛(𝛾, 𝑢) + 𝐺𝑛(𝛾, 𝑢), (2.8)

where 𝛾 and 𝑢 are two neural network classes chosen by the users.
To summarize, our approach constructs a loss function by merging the measurement data with an underlying physical model.

A pair of neural networks representing conductivity and voltage, respectively, are coupled by this physics-informed loss function.
Therefore, we call our method as Physics-Informed Neural Networks for Current Density Impedance Imaging (CDII-PINNs). A detailed
reconstruction procedure is shown in Algorithm 1.

In the classical methods for solving CDII, such as [1], to ensure that the reconstructions of conductivity and voltage are admissible,
one must solve the forward problem after each update of the reconstructions, which is costly. In contrast, CDII-PINNs need not fit
the measurement data and solve the forward problems alternatively, as the loss of which considers the measurement data and the
PDE constraints simultaneously.

3. Error analysis

In this section, we present an error estimate to the cost functional (2.6). For simplicity we consider the case with regularization
parameter 𝛼 = 0. Then the estimator (�̃�𝑛, �̃�𝑛) ∈ 𝛾 × 𝑢 can be evaluated via its expected excess risk

𝑅(�̃�𝑛, �̃�𝑛) = E𝑆
[

‖�̃�𝑛|∇�̃�𝑛| − 𝛾†|∇𝑢†|‖2𝐿2(𝑈 )

]

+ E𝑆
[

𝐺(�̃�𝑛, �̃�𝑛)
]

,

here the first term measures the difference between the magnitude of the recovered current density field and that of the ground
3

ruth current density field, and the second term reflects how the estimator satisfies the PDE constraint.
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Algorithm 1 CDII-PINNs.

Input: A measurement data set 𝑆 = {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 ∪ {�̄�𝑖}𝑛𝑖=1.
1: Construct neural networks (𝛾𝜙, 𝑢𝜃), parameterized by (𝜙, 𝜃).
2: Initialize parameters (𝜙, 𝜃) randomly.
3: for 𝑘 = 1 ∶ 𝐾 do
4: # Compute the loss (or empirical risk) based on the data set.
5: 𝐿𝑛(𝛾𝜙, 𝑢𝜃) = 𝐽𝑛(𝛾𝜙, 𝑢𝜃) + 𝐺𝑛(𝛾𝜙, 𝑢𝜃) as defined in (2.7).
6: # Back propagation:compute the gradient of the loss w.r.t.(𝜙, 𝜃).
7: (𝑔𝜙, 𝑔𝜃) = ∇(𝜙,𝜃)𝐿𝑛(𝛾𝜙, 𝑢𝜃).
8: # Update (𝜙, 𝜃) by some SGD-type algorithm.
9: (𝜙, 𝜃) ← SGD

{

(𝜙, 𝜃), (𝑔𝜙, 𝑔𝜃), 𝜏
}

. ∗

10: end for
utput: �̃�𝑛 = 𝛾𝜙, �̃�𝑛 = 𝑢𝜃 .

∗ Denote by SGD{parameters,gradient,learning rate} a step of SGD update.

Assumption 3.1. Assume 𝑓 is bounded, i,e., ‖𝑓‖𝐻3∕2(𝜕𝑈 ) ≤ 𝐵𝑓 with 𝐵𝑓 ≥ 1.

Assumption 3.2 (Boundedness). Assume 𝛾†, 𝑢† and functions in 𝛾 , 𝑢 are bounded, which means

(i) {𝛾†} ∪ 𝛾 ⊆ {𝛾 ∶ ‖𝛾‖𝑊 1,∞(𝑈 ) ≤ 𝐵𝛾} with 𝐵𝛾 ≥ 1, and
(ii) {𝑢†} ∪ 𝑢 ⊆ {𝑢 ∶ ‖𝑢‖𝑊 2,∞(𝑈 ) ≤ 𝐵𝑢} with 𝐵𝑢 ≥ 1.

To measuring the complexity or compactness of a subset of a metric space in a quantitative way, we introduce the covering
number and the metric entropy.

Definition 3.3 (Covering Number and Metric Entropy). Let (𝑆, 𝑑) be a metric space, and 𝑇 ⊆ 𝑆. A set 𝑇𝜀 ⊆ 𝑆 is called an 𝜀-cover of
𝑇 if and only if for each 𝑡 ∈ 𝑇 , there exists 𝑡𝜀 ∈ 𝑇𝜀, such that 𝑑(𝑡, 𝑡𝜀) ≤ 𝜀. Moreover,

𝑁(𝜀, 𝑇 , 𝑑) ∶= inf
{

|𝑇𝜀| ∶ 𝑇𝜀 is an 𝜀-cover of 𝑇
}

is called the 𝜀-cover number of 𝑇 , and 𝐻(𝜀, 𝑇 , 𝑑) = log𝑁(𝜀, 𝑇 , 𝑑) is called the 𝜀 metric entropy of 𝑇 .

For each estimator (�̃�𝑛, �̃�𝑛) taking values in 𝛾 × 𝑢, we define the corresponding quantity

𝛥𝑛(�̃�𝑛, �̃�𝑛) ∶= E𝑆
[

𝐿𝑛(�̃�𝑛, �̃�𝑛) − 𝐿𝑛(�̂�𝑛, �̂�𝑛)
]

,

which measures the difference between the expected empirical risk of (�̃�𝑛, �̃�𝑛) and the minimum over all functions in the hypothesis
class 𝛾 × 𝑢. It is obvious that 𝛥𝑛(�̃�𝑛, �̃�𝑛) ≥ 0 and 𝛥𝑛(�̃�𝑛, �̃�𝑛) = 0 if and only if 𝛥𝑛(�̃�𝑛, �̃�𝑛) is an empirical risk minimizer.

With the help of the preceding notations, we can decompose the expected excess risk as follows.

Lemma 3.4 (Error Decomposition). Under the noise model Eq. (2.4). Suppose Assumptions 3.1 and 3.2 are fulfilled. Then it holds for each
estimator (�̃�𝑛, �̃�𝑛) taking values in 𝛾 × 𝑢 that

𝑅(�̃�𝑛, �̃�𝑛) ≲ inf
𝜀>0

{

(𝐵2
𝛾𝐵

2
𝑢 + 𝐵

2
𝑓 + 𝛿2)(𝐻𝛾 +𝐻𝑢)𝑛−1 + (𝛿 + 𝐵𝛾𝐵𝑢)(𝐵𝛾 + 𝐵𝑢)𝜀

}

+ inf
(𝛾,𝑢)∈𝛾×𝑢

𝑅(𝛾, 𝑢) + 𝛥𝑛(�̃�𝑛, �̃�𝑛),

rovided 𝜀 > 0 and 𝑛 large enough, where

𝐻𝜀
𝛾 = log𝑁(𝜀,𝛾 , ‖ ⋅ ‖𝑊 1,∞(𝑈 )) and 𝐻𝜀

𝑢 = log𝑁(𝜀,𝑢, ‖ ⋅ ‖𝑊 2,∞(𝑈 )).

The proof refers to Appendix A.1. By Lemma 3.4, the expected excess risk can be decomposed into three parts: approximation
rror, optimization error, and statistical error. The approximation error, defined as inf (𝛾,𝑢)∈𝛾×𝑢 𝑅(𝛾, 𝑢), is the minimum of the

expected excess risk over all functions in the hypothesis class, measuring the expressive power of the functions in 𝛾 × 𝑢. The
optimization error 𝛥𝑛(�̃�𝑛, �̃�𝑛) measures the difference between the estimator and the empirical risk minimizer. The remaining part
is defined as the statistical error, which is caused by the discretization of the population risk. By choosing an appropriate 𝜀, we
can find that the statistical error converges to zero as the sample size 𝑛 → ∞. Furthermore, the convergence rate ( 1𝑛 ) obtained in
emma 3.4 is an improvement of ( 1

√

𝑛
) in [10,15–17].

In this paper, we ignore the optimization error, and focus on the approximation error, the statistical error and the trade-off
between them.
4
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Table 1
Commonly-used exponential PU-admissible activation functions.

Name Definition PU-Decay (𝑗, 𝜏) 𝜚,0 𝜚,1 𝜚,2 𝜚,3
a

sigmoid 1
1+𝑒−𝑥

(𝑗, 0) for any 𝑗 ∈ N 1 1/4 8/9 ≤ 1

tanh 𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
(𝑗, 0) for any 𝑗 ∈ N 1 1 1 2/3

softplus ln(1 + 𝑒𝑥) (𝑗, 1) for any 𝑗 ∈ N – – – –
swish 𝑥

1+𝑒−𝑥
(𝑗, 1) for any 𝑗 ∈ N – – – –

a
|𝜚(𝑥)| ≤ 𝜚,0, |𝜚′(𝑥)| ≤ 𝜚,1, |𝜚′′(𝑥)| ≤ 𝜚,2 and |𝜚′′′(𝑥)| ≤ 𝜚,3 for each 𝑥 ∈ �̄� .

.1. Approximation error

In this part, we bound the approximation error. By the following lemma, it is sufficient to estimate the approximation error of
unctions by neural networks.

emma 3.5. Suppose Assumption 3.2 is fulfilled. Then

inf
(𝛾,𝑢)∈𝛾×𝑢

𝑅(𝛾, 𝑢) ≤ 𝐶app ⋅ 𝐵
2
𝛾𝐵

2
𝑢

(

inf
𝛾∈𝛾

‖𝛾 − 𝛾†‖𝐶1(�̄� ) + inf
𝑢∈𝑢

‖𝑢 − 𝑢†‖𝐻2(𝑈 )

)

,

where 𝐶app is a constant depending on 𝛾0, 𝛾1, 𝑈 and 𝐵𝑓 .

The proof refers to Appendix A.2.
We now turn to investigate the function approximation problems. To this end, we first introduce a type of activation functions.

Definition 3.6 (Exponential PU-Admissible Function [18]). Let 𝑗 ∈ N and 𝜏 ∈ {0, 1}. We say that a function 𝜚 ∶ R → R is exponential
(𝑗, 𝜏)-PU-admissible, if

(a) 𝜚 is bounded if 𝜏 = 0, and 𝜚 is Lipschitz continuous if 𝜏 = 1;
(b) There exists 𝑅 > 0 such that 𝜚 ∈ 𝐶𝑗 (R∖[−𝑅,𝑅]);
(c) 𝜚′ ∈ 𝑊 𝑗−1,∞(R), if 𝑗 ≥ 1;
(d) There exists 𝐴 = 𝐴(𝜚), 𝐵 = 𝐵(𝜚) ∈ R with 𝐴 < 𝐵, some 𝐶 = 𝐶(𝜚, 𝑗) > 0 and some 𝐷 = 𝐷(𝜚, 𝑗) > 0 such that

(d.1) |𝐵 − 𝜚(𝜏)(𝑥)| ≤ 𝐶 exp(−𝐷𝑥) for all 𝑥 > 𝑅;
(d.2) |𝐴 − 𝜚(𝜏)(𝑥)| ≤ 𝐶 exp(𝐷𝑥) for all 𝑥 < −𝑅;
(d.3) |𝜚(𝑘)(𝑥)| ≤ 𝐶 exp(−𝐷|𝑥|) for all 𝑥 ∈ R∖[−𝑅,𝑅] and all 𝑘 = 𝜏 + 1,… , 𝑗.

Several commonly-used exponential PU-admissible activation functions are shown in Table 1.
Applying Proposition 4.8 in [18] and Lemma 3.5, we have the follow approximation error estimate.

Lemma 3.7 (Approximation Error). Let 𝜇 > 0, 𝑑, 𝑠 ∈ N+ and 𝑈 ⊆ (0, 1)𝑑 be a domain. Suppose 𝛾† ∈ 𝐶𝑠+1(�̄� ) and 𝑢† ∈ 𝐻𝑠+2(𝑈 ). Suppose
𝛾 ,𝛾 ,𝑢,𝑢 ∈ N+, and 𝜚 is an exponential PU-admissible activation function. Suppose Assumptions 3.1 and 3.2 are fulfilled. Set

(i) 𝛾 = 𝜚(𝛾 ,𝛾 ,𝛾 ) with 𝛾 = 𝐶 log(𝑑 + 𝑠) and 𝛾 = 𝐶
2𝑠
𝑑 +7
𝛾 , and

(ii) 𝑢 = 𝜚(𝑢,𝑢,𝑢) with 𝑢 = 𝐶 log(𝑑 + 𝑠 + 1) and 𝑢 = 𝐶
2𝑠+2
𝑑 +7

𝑢 ,

where the constant 𝐶 depends on 𝑑, 𝑠, 𝜇 and 𝑈 . Then

inf
(𝛾,𝑢)∈𝛾×𝑢

𝑅(𝛾, 𝑢) ≤ 𝐶app ⋅ 𝐵
2
𝛾𝐵

2
𝑢

{

‖𝛾†‖𝐶𝑠+1(�̄� ) ⋅ 
− 𝑠−𝜇

𝑑
𝛾 + ‖𝑢†‖𝐻𝑠+2(𝑈 ) ⋅ 

− 𝑠+1−𝜇
𝑑

𝑢

}

,

where 𝐶app is a constant depending on 𝑑, 𝑠, 𝜇, 𝛾0, 𝛾1, 𝑈 and 𝐵𝑓 .

The proof refers to Appendix A.2. Lemma 3.7 shows that as long as the number of parameters is large enough, the neural networks
an approximate the ground truth conductivity and voltage with arbitrarily small errors. In addition, when the size of the neural
etworks is the same, the smoother the ground truth conductivity and voltage are, the smaller the approximation error will be.

.2. Statistical error

An estimate of the statistical error is presented in this section. With reference to the definition of statistical error in Lemma 3.4,
n upper bound on the statistical error will be obtained if we can estimate the metric entropy of the hypothesis classes𝛾 and
𝑢. In [19], the author gives the 𝐿∞ covering number bounds for some commonly used classes of neural networks. However, in
DE-related problems, we need to estimate not only the 𝐿∞ covering number of the set of networks, but also that of the set of

𝑚,∞
5

etwork derivatives. In other words, we need to bound the 𝑊 (𝑚 ≥ 1) covering numbers of the set of networks. In [15,16],
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the derivatives of ReLU𝑘-networks are implemented by ReLU-type networks, whose covering numbers can be bounded via [19].
Unfortunately, this approach cannot be extended to networks with other activation functions. In [10,17], the covering numbers
of the derivatives of the networks are estimated by converting them to the covering numbers of the parameter class, which is a
compact subset of R𝑛, by Lipschitz continuity. This method requires some tedious manipulations. In this paper, we consider the
classes of neural networks as relatively compact subsets of the smooth function spaces. We then estimate their metric entropy using
the well-known entropy bounds for classes of smooth functions.

Lemma 3.8 (Statistical Error). Let 𝜇 > 0, 𝑠 ∈ N+ and  ∈ N+. Suppose 𝑈 ⊂⊂ (0, 1)𝑑 be a domain with 𝐶∞-boundary. Let 𝜚 be an activation
function which, together with its up to third-order derivatives, are continuous and uniformly bounded. Suppose Assumption 3.2 is fulfilled.
Set

(i) 𝛾 = 𝜚(𝛾 , ,𝛾 ) with 𝛾 = 𝐶 log(𝑑 + 𝑠) and 𝛾 = 𝐶
2𝑠
𝑑 +7, and

(ii) 𝑢 = 𝜚(𝑢, ,𝑢) with 𝑢 = 𝐶 log(𝑑 + 𝑠 + 1) and 𝑢 = 𝐶
2𝑠+2
𝑑 +7,

where the constant 𝐶 depends on 𝑑, 𝑠, 𝜇 and 𝑈 . Then

inf
𝜀>0

{

(𝐵2
𝛾𝐵

2
𝑢 + 𝐵

2
𝑓 + 𝛿2)(𝐻𝛾 +𝐻𝑢)𝑛−1 + (𝛿 + 𝐵𝛾𝐵𝑢)(𝐵𝛾 + 𝐵𝑢)𝜀

}

≤ 𝐶sta ⋅ 
6(4𝑑+𝑠+1)

𝑑+1 log3(𝑑+𝑠+1)𝑛−
1
𝑑+1 ,

here 𝑐 is an absolute constant and 𝐶sta is a constant depending on 𝑑, 𝑠, 𝜚, 𝛿, 𝐵𝛾 , 𝐵𝑢 and 𝑈 .

The proof refers to Appendix A.3. Note that both sigmoid and tanh satisfy the conditions in Lemma 3.8, as shown in Table 1.

.3. Convergence rate

Up to now, we have bounded the approximation error and the statistical error, respectively. Lemmas 3.7 and 3.8 show that the
pproximation error will decrease with the size of the neural networks, while at the same time the statistical error will increase. By
aking a trade-off between the two, we obtain the following theorem.

heorem 3.9 (Convergence Rate). Under the noise model Eq. (2.4). Let 𝜇 > 0, 𝑑, 𝑠 ∈ N+ and 𝑈 ⊂⊂ (0, 1)𝑑 be a domain with 𝐶∞-boundary.
uppose 𝛾† ∈ 𝐶𝑠+1(�̄� ) and 𝑢† ∈ 𝐻𝑠+2(𝑈 ). Let 𝜚 be an exponential PU-admissible activation function which, together with its up to third-order
erivatives, are continuous and uniformly bounded. Suppose Assumptions 3.1 and 3.2 are fulfilled. Set 𝛾 = 𝑢 = 𝜚(, ,) with

 = 𝐶(𝑑, 𝑠, 𝜇, 𝑈 ),  = 
(

𝑛
1

6(4𝑑+𝑠+1) log3(𝑑+𝑠+1)
)

and  = 
(

𝑛
𝑠+7𝑑

3𝑑(4𝑑+𝑠+1) log3(𝑑+𝑠+1)
)

.

hen it follows for each estimator (�̃�𝑛, �̃�𝑛) taking values in 𝛾 × 𝑢 that

𝑅(�̃�𝑛, �̃�𝑛) = 
(

𝑛
− 𝑠−𝜇

7𝑑(4𝑑+𝑠+1) log3(𝑑+𝑠+1)
)

.

Theoretical guarantees for deep learning-based methods for solving PDEs have attracted considerable attention. In [15,16,20],
the convergence rate of deep Ritz methods and PINNs with ReLU𝑘 networks is presented. In particular, the minimax optimal rate is
proved in [20]. An error estimate of deep Ritz method with different activation functions is given in [17]. In addition, [21] gives
an error analysis for deep Ritz methods for eigenvalue problems. However, limited work has been done on error analysis of deep
learning based methods for inverse problems. In [10], a convergence rate is proposed for a neural network method for solving
CDII. To the best of our knowledge, Theorem 3.9 is the first rigorous theoretical analysis of PINNs for reconstructing non-constant
coefficients.

Theorem 3.9 demonstrates the consistency of the expected excess risk, that is, both the approximation error and the statistical
error in Lemma 3.4 vanish as the sample size 𝑛→ ∞, provided the number of parameters in networks is large enough. In addition, the
convergence rate ≃ (𝑛−

𝑠
𝑐⋅𝑑2 ) depends on the dimension 𝑑 and the smoothness 𝑠 of the ground truth conductivity and voltage. We first

consider the dependence of the convergence rate on 𝑑. Note that the rate (𝑛−
1

𝑐⋅𝑑2 ) in Theorem 3.9 is slower than (𝑛−
1
𝑐⋅𝑑 ) in [10],

which is because the statistical error bound in Lemma 3.8 is not sharp enough. However, the number of parameters required in this
paper (𝑛

1
𝑐⋅𝑑 ) is significantly smaller than that (𝑛

1
𝑐 ) in [10] in high-dimensional problems. Furthermore, taking the smoothness

into consideration, the rate ≃ (𝑛−
𝑠

𝑐⋅𝑑2 ) shows that our approach may overcome the curse of dimensionality, provided the ground
truth functions are smooth enough.

Remark 3.10. For simplicity of presentation, this paper only considers the case where the regularization parameter 𝛼 is zero. In
general, if the regularization parameter 𝛼 > 0, the error bound of the population loss is given by

E𝑆
[

𝐿𝜆(𝑞, �̂�)
]

≤ 
(

𝑛
− 𝑠−𝜇

7𝑑(4𝑑+𝑠+1) log3(𝑑+𝑠+1)
)

+ (𝛼) + (𝛿2).

By choosing the sample size 𝑛 and the regularization parameter 𝛼 are certain order of 𝛿, we can obtain a convergence rate of the
population loss in terms of the noise level 𝛿.
6
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Fig. 1. The reconstructions of conductivity after different epochs. 𝛿 = 1%.

Remark 3.11. The analysis in this work focuses on the error estimation to the cost functional, which is applicable to any
regularization parameter 𝛼. If the error analysis to the conductivity 𝛾 is needed, we need to choose the regularization parameter 𝛼
properly, to ensure the stability of unknown conductivity from the cost functional with respect to the noise level. In that case, the
number of samples should also depend on the noise level. We will leave the analysis to the conductivity 𝛾 in the future work.

4. Numerical experiments and discussions

Let 𝑈 = (0, 1)2. We use the two-to-one voltage potential of 𝑓 , which equals the trace of the harmonic function 𝑢ℎ(𝑥, 𝑦) = 𝑦. Given
an admissible pair (𝛾, 𝑓 ), we solve numerically the problem

∇ ⋅ (𝛾∇𝑢) = 0, 𝑢|𝜕𝛺 = 𝑓. (4.1)

Once the solution 𝑢 is found, the interior data 𝑎 = 𝛾|∇𝑢| are computed. Then the noisy data 𝑎𝛿 is generated by adding Gaussian
random noise

𝑎𝛿(𝑥) = 𝑎†(𝑥) + 𝛿 ⋅ 𝑎†(𝑥)𝜉(𝑥), 𝜉(𝑥) ∼ 𝑁(0, 1).

In all of our experiments, we parameterize networks 𝛾𝜙 and 𝑢𝜃 as four-layer tanh-MLP with width 32 (or 64), of which the
parameters are initialized by Xavier’s method [22]. For each example, we use 𝑛 = 100000 interior measurement data points and
𝑛 = 100000 boundary points and run Algorithm 1 for 50000 epochs with batch size 2048. We minimize the loss by ADAM [23], and
the learning rate is set as 1.0 × 10−3, which does not change during the training. Thanks to the robustness of our methods, there is
no need for denoising and other preprocessing to the noisy measurements. We use the relative 𝐿2-error err(�̂�) = ‖𝛾† − �̂�‖2∕‖𝛾†‖2 to
measure the accuracy of the reconstruction �̂�. In Examples 4.1 and 4.2, we use 𝐿2-regularization 𝜓(𝛾) = ‖𝛾‖2

𝐿2(𝑈 )
with regularization

parameter 𝛼 = 1.0 × 10−5, while both 𝐿2 and TV regularization 𝜓(𝛾) = |∇𝛾|𝐿1(𝑈 ) are applied in Example 4.3 with 𝛼 = 1.0 × 10−3 and
𝛼 = 1.0 × 10−3, respectively.

We solve Eq. (4.1) by MATLAB 2022b. Our models are implemented by PyTorch 12.1 [24], and trained with one NVIDIA Tesla
V100 GPU.

Example 4.1. We employ the four-mode model conductivity distribution [1]
†

7

𝛾 (𝑥, 𝑦) = 1 + 𝛾𝑠(𝑥, 𝑦),
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Fig. 2. The ground truth 𝑎†, noisy measurements 𝑎𝛿 , and reconstruction �̂� by our method in Example 4.1. 𝛿 = 1% (top) 𝛿 = 10% (middle) 𝛿 = 20% (bottom).

where 𝛾𝑠 is a function with support in 𝑈 , which is given by

𝛾𝑠(𝑥, 𝑦) = 0.3 ⋅ (𝑎(𝑥, 𝑦) − 𝑏(𝑥, 𝑦) − 𝑐(𝑥, 𝑦)),

𝑎(𝑥, 𝑦) = 0.3 ⋅ (1 − 3(2𝑥 − 1))2 ⋅ exp[−9 ⋅ (2𝑥 − 1)2 − (6𝑦 − 2)2],

𝑏(𝑥, 𝑦) =
(3(2𝑥 − 1)

5
− 27 ⋅ (2𝑥 − 1)3 − (3 ⋅ (2𝑦 − 1))5

)

exp[−(9 ⋅ (2𝑥 − 1)2 + 9 ⋅ (2𝑦 − 1)2)],

𝑐(𝑥, 𝑦) = exp[−(3 ⋅ (2𝑥 − 1) + 1)2 − 9 ⋅ (2𝑦 − 1)2].

We first apply our proposed method to the reconstruction of conductivity and voltage from data with 1% noise. Fig. 1 displays
the reconstructed conductivity obtained by training the neural network for different epochs. Our results demonstrate that a rough
approximation of the conductivity can be obtained after a few epochs, while further training is required to capture the fine-
scale details. More exactly, we find that the neural network first learns to capture the low-frequency features, before fitting the
high-frequency information. These findings align with the frequency principle [25].

Table 2 presents the relative errors of recovered conductivity and voltage from data with different noise levels, showing that
our method is robust to the noise. Fig. 2 compares the measurement and recovered data at different noise levels. The reconstructed
conductivity and voltage from the data at different noise levels and their point-wise absolute error are shown in Figs. 3 and 4.

Example 4.2 (CDII with Discontinuous Conductivity). Let 𝜌(𝑥, 𝑦) = ‖(𝑥, 𝑦) − ( 12 ,
1
2 )‖2.

𝛾†(𝑥, 𝑦) = 1 + 𝜒 1 exp(−2𝜌2).
8

{𝑥> 2 }
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Table 2
The relative 𝐿2-error of the recovered conductivity �̂� and voltage
�̂� in Example 4.1.

𝛿

1% 10% 20%

err(𝛾) 2.86 × 10−2 3.22 × 10−2 3.75 × 10−2

err(𝑢) 3.03 × 10−3 3.85 × 10−3 4.22 × 10−3

Fig. 3. The ground truth conductivity 𝛾†, reconstruction �̂� by our method, and the point-wise absolute error |�̂� − 𝛾†| in Example 4.1. 𝛿 = 1% (top) 𝛿 = 10%
(middle) 𝛿 = 20% (bottom).

We apply our approach to reconstruct the conductivity and voltage from the measurement data with 1%, 10%, and 20% noise,
respectively. The relative 𝐿2-error of the recovered voltage �̂� and conductivity �̂� are shown in Table 3. Our results demonstrate that
the proposed method can effectively reconstruct both the conductivity and voltage from data sets with noise levels of up to 20%,
while maintaining high accuracy. At the same time, the accuracy does not decrease significantly as the noise level increases. We
also compare the ground truth measurement data, noisy data, and recovered data in Fig. 5. As shown in Figs. 6 and 7, the error in
the reconstructed conductivity and voltage is primarily concentrated at the discontinuous interface, which aligns with the findings
of [10]. Additionally, our method has no significant advantage over that in [10] on this example, mainly because our method is
based on a strong form of the PDE.
9
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Fig. 4. The ground truth voltage 𝑢†, reconstruction �̂� by our method, and the point-wise absolute error |�̂� − 𝑢†| in Example 4.1. 𝛿 = 1% (top) 𝛿 = 10% (middle)
𝛿 = 20% (bottom).

Table 3
The relative 𝐿2-error of the recovered conductivity �̂� and voltage
�̂� in Example 4.2.

𝛿

1% 10% 20%

err(𝛾) 3.71 × 10−2 4.38 × 10−2 4.81 × 10−2

err(𝑢) 8.48 × 10−3 9.08 × 10−3 9.67 × 10−3

Example 4.3 (CDII with Disjoint Modes in Conductivity). Let 𝛺1 = {(𝑥, 𝑦) ∶ 100(𝑥 − 0.3)2 + 36(𝑦 − 0.7)2 − 72(𝑥 − 0.3)(𝑦 − 0.7) < 1} and
𝛺2 = {(𝑥, 𝑦) ∶ 36(𝑥 − 0.6)2 + 36(𝑦 − 0.4)2 < 1}. We set the ground truth conductivity as

𝛾†(𝑥, 𝑦) = 1 + 𝜒𝛺1
− 𝜒𝛺2

.

In this example, we set the noise level 𝛿 = 10% and use the TV-regularization. Referring to (2.7) in [10], we replace the term
|∇𝛾(𝑥)| in TV-regularization with Huber function

ℎ(𝛾) =

{

|∇𝛾(𝑥)|, |∇𝛾(𝑥)| ≥ 𝜁,
|∇𝛾(𝑥)|2 𝜁
10

2𝜁 + 2 , otherwise,
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Fig. 5. The ground truth 𝑎†, noisy measurements 𝑎𝛿 , and reconstruction �̂� by our method in Example 4.2. 𝛿 = 1% (top) 𝛿 = 10% (middle) 𝛿 = 20% (bottom).

Table 4
The relative 𝐿2-error of the recovered conductivity �̂� and volt-
age �̂� obtained by 𝐿2-regularization and TV-regularization in
Example 4.3.

𝐿2-regularization TV-regularization

err(𝛾) 7.19 × 10−2 5.98 × 10−2

err(𝑢) 7.62 × 10−3 7.13 × 10−3

where 𝜁 > 0 is a small constant. We set 𝜁 = 0.001 in this example (see Table 4).
The noisy data 𝑎𝛿 and its reconstructed counterpart �̂� are illustrated in Fig. 8. Fig. 9 shows a comparison between ground truth

conductivity 𝛾† and its reconstruction �̂�. As can be seen, our method determines the shape of the different modes precisely, and
thanks to the TV-regularization, it can capture the nature of the piece-wise constants of the ground truth conductivity, while the
𝐿2-regularization cannot. A comparison between the ground truth voltage 𝑢† and its reconstruction �̂� is shown in Fig. 10.

5. Conclusions

In this paper, we propose a PINNs-based method for solving CDII. We first use two neural networks to represent the conductivity
and voltage and then construct the loss function over the measurement data. Our method directly reconstructs the conductivity and
voltage by minimizing the loss function, avoiding iterative updates. We present an error estimate and give a convergence rate. At
11
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Fig. 6. The ground truth conductivity 𝛾†, reconstruction �̂� by our method, and the point-wise absolute error |�̂� − 𝛾†| in Example 4.2. 𝛿 = 1% (top) 𝛿 = 10%
(middle) 𝛿 = 20% (bottom).

the same time, our error analysis can provide a way to choose the structure of the neural networks. The stability of CDII will be
taken into account in future work. The method has shown robustness to noise in numerical experiments. Finally, the coupled-PINNs
method can be directly extended to general inverse problems, although we have only considered CDII in this paper. Simultaneously,
the error analysis framework and techniques are readily applicable.
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Fig. 7. The ground truth voltage 𝑢†, reconstruction �̂� by our method, and the point-wise absolute error |�̂� − 𝑢†| in Example 4.2. 𝛿 = 1% (top) 𝛿 = 10% (middle)
𝛿 = 20% (bottom).

Fig. 8. The ground truth 𝑎†, noisy measurements 𝑎𝛿 with 𝛿 = 10%, and reconstruction �̂� by our method in Example 4.3. TV-regularization.
13
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Fig. 9. The ground truth conductivity 𝛾†, reconstruction �̂� by our method, and the point-wise absolute error |�̂� − 𝛾†| in Example 4.3. 𝛿 = 10%. TV-regularization
(top) 𝐿2-regularization (bottom).

Fig. 10. The ground truth voltage 𝑢†, reconstruction �̂� by our method, and the point-wise absolute error |�̂� − 𝑢†| in Example 4.3. 𝛿 = 10% TV-regularization.

Appendix. Proofs

A.1. The proof of the error decomposition

Inspired by the proof of Lemma 4 in [26], we prove Lemma 3.4 in this section.
For an estimator (�̃�𝑛, �̃�𝑛) ∈ 𝛾 × 𝑢 depending upon a data sample 𝑆, we introduce its expected empirical risk

𝑅𝑛(�̃�𝑛, �̃�𝑛) ∶= E𝑆
[1
𝑛

𝑛
∑

𝑖=1
(�̃�𝑛|∇�̃�𝑛|(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))2

]

+ E𝑆
[

𝐺𝑛(�̃�𝑛, �̃�𝑛)
]

,

and recall its optimization error

𝛥 (�̃� , �̃� ) = E
[

𝐿 (�̃� , �̃� ) − 𝐿 (�̂� , �̂� )
]

.
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Lemma A.1. Let 𝛾 and 𝑢 be two function classes with 𝑁𝛾 = 𝑁(𝜀,𝛾 , ‖⋅;𝑊 1,∞(𝑈 )‖) and 𝑁𝑢 = 𝑁(𝜀,𝑢, ‖⋅;𝑊 2,∞(𝑈 )‖). Suppose
ssumptions 3.1 and 3.2 are fulfilled. Then it holds for each estimator (�̃�𝑛, �̃�𝑛) taking values in 𝛾 × 𝑢 that

𝑅(�̃�𝑛, �̃�𝑛) ≲ 𝑅𝑛(�̃�𝑛, �̃�𝑛) + (𝐵2
𝛾𝐵

2
𝑢 + 𝐵

2
𝑓 )

log(𝑁𝛾𝑁𝑢)
𝑛

+ 𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀,

with 𝛿 > 0 and 𝑛 large enough.

Proof. The proof is divided to four parts as follows.
Step 1. For any 𝜀 > 0, let 𝛾 = {𝛾𝑘 ∶ 𝑘 = 1,… , 𝑁𝛾} be the minimal 𝜀-cover of 𝛾 with respect to ‖ ⋅ ‖𝑊 1,∞(𝑈 ), and let
𝑢 = {𝑢𝓁 ∶ 𝓁 = 1,… , 𝑁𝑢} be the minimal 𝜀-cover of 𝑢 with respect to ‖ ⋅ ‖𝑊 2,∞(𝑈 ). Then for an estimator (�̃�𝑛, �̃�𝑛) ∈ 𝛾 × 𝑢,
there exists (𝛾𝑘∗ , 𝑢𝓁∗ ) ∈ 𝛾 × 𝑢, such that

‖𝛾𝑘∗ − �̃�𝑛‖𝑊 1,∞(𝑈 ) ≤ 𝜀 and ‖𝑢𝓁∗ − �̃�𝑛‖𝑊 2,∞(𝑈 ) ≤ 𝜀.

ithout loss of generality, we can assume that ‖𝛾𝑘‖𝑊 1,∞(𝑈 ) ≤ 𝐵𝛾 and ‖𝑢𝓁‖𝑊 2,∞(𝑈 ) ≤ 𝐵𝑢. Generate a ghost sample 𝑆′ = {(𝑋′
𝑖 , 𝑌

′
𝑖 )}

𝑛
𝑖=1 ∪

{�̄�′
𝑖 }
𝑛
𝑖=1 independent of 𝑆, where (𝑋′

𝑖 , 𝑌
′
𝑖 ) and �̄�′

𝑖 are 𝑛 independent copies of (𝑋, 𝑌 ) and �̄�′
𝑖 , respectively. Then we have

|𝑅(�̃�𝑛, �̃�𝑛) − 𝑅𝑛(�̃�𝑛, �̃�𝑛)| =
|

|

|

E𝑆′

[ 1
𝑛

𝑛
∑

𝑖=1
(�̃�𝑛|∇�̃�𝑛|(𝑍′

𝑖 ) − 𝛾
†
|∇𝑢†|(𝑍′

𝑖 ))
2
]

− E𝑆
[1
𝑛

𝑛
∑

𝑖=1
(�̃�𝑛|∇�̃�𝑛|(𝑍𝑖) − 𝛾†|∇𝑢†|(𝑍𝑖))2

]

+ E𝑆′

[ 1
𝑛

𝑛
∑

𝑖=1
𝑔(�̃�𝑛, �̃�𝑛, 𝑍′

𝑖 )
]

− E𝑆
[1
𝑛

𝑛
∑

𝑖=1
𝑔(�̃�𝑛, �̃�𝑛, 𝑍𝑖)

]

|

|

|

≤ E𝑆E𝑆′

[

|

|

|

1
𝑛

𝑛
∑

𝑖=1
𝜑𝑘∗ ,𝓁∗ (𝑍𝑖, 𝑍′

𝑖 )
|

|

|

]

+ 28𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀,

(5.1)

here

𝑔(𝛾, 𝑢,𝑋, �̄�) ∶= (∇ ⋅ (𝛾∇𝑢)(𝑋))2 + (𝑇 𝑢(�̄�) − 𝑓 (�̄�𝑖))2

ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�) ∶= (𝛾𝑘|∇𝑢𝓁|(𝑋) − 𝛾†|∇𝑢†|(𝑋))2 + 𝑔(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�),

𝜑𝑘,𝓁(𝑋, �̄�,𝑋′, �̄�′) ∶= ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�) − ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋′, �̄�′),

for 𝑘 = 1,… , 𝑁𝛾 and 𝓁 = 1,… , 𝑁𝑢.
Step 2. Set 𝑟𝑘,𝓁 = max{𝐴,E1∕2

(𝑋,�̄�)
[ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�)]} with 𝐴 > 0 for 𝑘 = 1,… , 𝑁𝛾 and 𝓁 = 1,… , 𝑁𝑢, then

𝑟2𝑘∗ ,𝓁∗ = max
{

𝐴2,E(𝑋,�̄�)[ℎ(𝛾𝑘∗ , 𝑢𝓁∗ , 𝑋, �̄�)|𝑆]
}

≤ 𝐴2 + E(𝑋,�̄�)[ℎ(�̃�𝑛, �̃�𝑛, 𝑋, �̄�)|𝑆] + 14𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀,
(5.2)

where the last inequality is follows from ‖�̃�𝑛 − 𝛾𝑘∗‖𝑊 1,∞(𝑈 ) ≤ 𝜀 and ‖�̃�𝑛 − 𝑢𝓁∗‖𝑊 2,∞(𝑈 ) ≤ 𝜀. Define a random variable

𝑇 = max
𝑘,𝓁

|

|

|

1
𝑛𝑟𝑘,𝓁

𝑛
∑

𝑖=1
𝜑𝑘,𝓁(𝑋𝑖, �̄�𝑖, 𝑋

′
𝑖 , �̄�

′
𝑖 )
|

|

|

, (5.3)

then by (5.1) we obtain by using Cauchy–Schwarz and AM–GM inequality

|𝑅(�̃�𝑛, �̃�𝑛) − 𝑅𝑛(�̃�𝑛, �̃�𝑛)| ≤ E𝑆,𝑆′ [𝑟𝑘∗ ,𝓁∗𝑇 ] + 28𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀

≤ 1
2
E𝑆 [𝑟2𝑘∗ ,𝓁∗ ] +

1
2
E𝑆,𝑆′ [𝑇 2] + 28𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀.

(5.4)

tep 3. Now we turn to estimate E𝑆 [𝑟2𝑘∗ ,𝓁∗ ] and E𝑆,𝑆′ [𝑇 2]. By (5.2), E𝑆 [𝑟2𝑘∗ ,𝓁∗ ] can be evaluated by

E𝑆 [𝑟2𝑘∗ ,𝓁∗ ] ≤ 𝐴2 + E𝑆E(𝑋,�̄�)[ℎ(�̃�𝑛, �̃�𝑛, 𝑋, �̄�)|𝑆] + 14𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀

≤ 𝐴2 + 𝑅(�̃�𝑛, �̃�𝑛) + 14𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀.
(5.5)

n order to estimate E𝑆,𝑆′ [𝑇 2], we bound the tail probability P{𝑇 > 𝑡} by Bernstein inequality. Observe that E[𝜑𝑘,𝓁(𝑋, �̄�,𝑋′, �̄�′)] = 0,
𝜑𝑘,𝓁(𝑋, �̄�,𝑋′, �̄�′)| ≤ 12𝐵2

𝛾𝐵
2
𝑢 + 2(𝐵2

𝑓 ), and

𝜎2𝜑 = Var (𝜑𝑘,𝓁(𝑋, �̄�,𝑋′, �̄�′) = 2Var(ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�)) ≤ 2E(𝑋,�̄�)[ℎ
2(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�)]

≤ (12𝐵2
𝛾𝐵

2
𝑢 + 2𝐵2

𝑓 )E(𝑋,�̄�)[ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�)] ≤ (12𝐵2
𝛾𝐵

2
𝑢 + 2𝐵2

𝑓 )𝑟
2
𝑘,𝓁 ,

here the second inequality is owing to ℎ(𝛾𝑘, 𝑢𝓁 , 𝑋, �̄�) ≥ 0. Then using Bernstein inequality gives

P
{

|

|

|

∑𝑛
𝑖=1 𝜑𝑘,𝓁(𝑋, �̄�,𝑋

′, �̄�′)
𝑛

|

|

|

≥ 𝑡
}

≤ 2 exp
(

− 1
2 2 2

⋅
𝑛𝑡2

2

)

.
(5.6)
15

4(6𝐵𝛾𝐵𝑢 + 𝐵𝑓 ) 𝑡∕3 + 𝑟𝑘,𝓁
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For ease of notations, we denote 𝐵 = 4(6𝐵2
𝛾𝐵

2
𝑢 + 𝐵

2
𝑓 ). Since 𝐴 ≤ min𝑘,𝓁 𝑟𝑘,𝓁 , we obtain by (5.6)

P{𝑇 ≥ 𝑡} ≤
𝑁𝛾
∑

𝑘=1

𝑁𝑢
∑

𝓁=1
P
{

|

|

|

∑𝑛
𝑖=1 𝜑𝑘,𝓁(𝑍𝑖, 𝑍

′
𝑖 )

𝑛𝑟𝑘,𝓁
|

|

|

≥ 𝑡
}

≤ 𝑁𝛾𝑁𝑢max
𝑘,𝓁

P
{

|

|

|

∑𝑛
𝑖=1 𝜑𝑘,𝓁(𝑍𝑖, 𝑍

′
𝑖 )

𝑛
|

|

|

≥ 𝑡𝑟𝑘,𝓁
}

≤ 2𝑁𝛾𝑁𝑢 exp
(

− 1
𝐵

⋅
𝑛𝑡2

𝑡∕3𝐴 + 1

)

≤ 2𝑁𝛾𝑁𝑢 exp
(

−3𝐴𝑛𝑡
2𝐵

)

,

here the last inequality holds for 𝑡 ≥ 3𝐴. Hence for 𝑏 ≥ 3𝐴, it follows that

E𝑆,𝑆′ [𝑇 2] = ∫

∞

0
P{𝑇 2 ≥ 𝑢}𝑑𝑢 = ∫

∞

0
P{𝑇 2 ≥

√

𝑢}𝑑𝑢

≤ 𝑏2 + 2𝑁𝛾𝑁𝑢 ∫

∞

𝑏2
exp

(

−
3𝐴𝑛

√

𝑢
2𝐵

)

𝑑𝑢

≤ 𝑏2 + 4𝑁𝛾𝑁𝑢

( 2𝐵
3𝐴𝑛

)2(
1 + 3𝐴𝑛𝑏

2𝐵

)

exp
(

−3𝐴𝑛𝑏
2𝐵

)

.

Assume 5 ≤ log𝑁𝛾𝑁𝑢 ≤ 𝑛, setting 𝑏 = 2𝐵
3𝐴𝑛 log(𝑁𝛾𝑁𝑢) gives

E𝑆,𝑆′ [𝑇 2] ≤
( 2𝐵
3𝐴𝑛

)2
(

log2(𝑁𝛾𝑁𝑢) + log(𝑁𝛾𝑁𝑢) + 4
)

≤ 2
( 2𝐵
3𝐴

)2( log(𝑁𝛾𝑁𝑢)
𝑛

)2
. (5.7)

tep 4. Combining (5.4)(5.5)(5.7) yields

|𝑅(�̃�𝑛, �̃�𝑛) − 𝑅𝑛(�̃�𝑛, �̃�𝑛)|

≤ 1
2
𝑅(�̃�𝑛, �̃�𝑛) +

1
2
𝐴2 +

( 2𝐵
3𝐴

)2( log(𝑁𝛾𝑁𝑢)
𝑛

)2
+ 35𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀.

Setting 𝐴 =
√

2𝐵 log(𝑁𝛾𝑁𝑢)
9𝑛 gives the result. □

In order to estimate the expected empirical risk, we first introduce the following lemma.

Lemma A.2. Let 𝜂𝑗 ∼ 𝗌𝗎𝖻𝖦(0, 𝛿2) for 𝑗 = 1,… , 𝑁 , then

E
[

max
1≤𝑗≤𝑁

𝜂2𝑗
]

≤ 4𝜀2(1 + log𝑁).

Proof . For any 0 < 𝑡 < (2𝛿2)−1, we can derive

exp
(

𝑡E
[

max
1≤𝑗≤𝑁

𝜂2𝑗
])

≤ E
[

max
1≤𝑗≤𝑁

exp(𝑡𝜂2𝑗 )
]

≤ 𝑁E[exp(𝑡𝜂21 )]

≤ 𝑁
√

2𝜋𝜀2 ∫R
exp(𝑡𝑥2) exp

(

− 𝑥2

2𝛿2
)

𝑑𝑥

= 𝑁
√

1 − 2𝛿2𝑡
.

herefore

E
[

max
1≤𝑗≤𝑁

𝜂2𝑗
]

≤ 1
𝑡
log 𝑁

√

1 − 2𝛿2𝑡
.

Setting 𝑡 = (4𝛿2)−1 completes the proof. □

emma A.3. Suppose Assumptions 3.1 and 3.2 hold.

𝑅𝑛(�̃�𝑛, �̃�𝑛) ≲ inf
(𝛾,𝑢)∈𝛾×𝑢

𝑅(𝛾, 𝑢) + 𝛥𝑛(�̃�𝑛, �̃�𝑛) +
𝛿2 log(𝑁𝛾𝑁𝑢)

𝑛
+ (𝛿 + 𝐵𝛾𝐵𝑢)(𝐵𝛾 + 𝐵𝑢)𝜀.

roof. We divide the proof into three steps.
tep 1. For any fixed (𝛾, 𝑢) ∈ 𝛾 × 𝑢, it is easy to show that
16

E𝑆 [𝐿𝑛(�̃�𝑛, �̃�𝑛)] ≤ E𝑆 [𝐿𝑛(𝛾, 𝑢)] + 𝛥𝑛(�̃�𝑛, �̃�𝑛). (5.8)
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By definition, we have

E𝑆 [𝐿𝑛(�̃�𝑛, �̃�𝑛)] = E𝑆
[ 1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − �̃�𝑛|∇�̃�𝑛|(𝑋𝑖))2

]

+ E𝑆
[ 1
𝑛

𝑛
∑

𝑖=1
𝑔(�̃�𝑛, �̃�𝑛, 𝑋𝑖, �̄�𝑖)

]

= E𝑆
[ 1
𝑛

𝑛
∑

𝑖=1
(𝛾†|∇𝑢†|(𝑋𝑖) − �̃�𝑛|∇�̃�𝑛|(𝑋𝑖) + 𝜉𝑖)2

]

+ E𝑆
[ 1
𝑛

𝑛
∑

𝑖=1
𝑔(�̃�𝑛, �̃�𝑛, 𝑋𝑖, �̄�𝑖)

]

= 𝑅𝑛(�̃�𝑛, �̃�𝑛) + 𝛿2 − E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖�̃�𝑛|∇�̃�𝑛|(𝑋𝑖)

]

,

(5.9)

nd

E𝑆 [𝐿𝑛(𝛾, 𝑢)] = E𝑆
[1
𝑛

𝑛
∑

𝑖=1
(𝑌𝑖 − 𝛾|∇𝑢|(𝑋𝑖))2

]

+ E𝑆
[1
𝑛

𝑛
∑

𝑖=1
𝑔(𝛾, 𝑢,𝑋𝑖, �̄�𝑖)

]

= E𝑆
[ 1
𝑛

𝑛
∑

𝑖=1
(𝛾†|∇𝑢†|(𝑋𝑖) − 𝛾|∇𝑢|(𝑋𝑖) + 𝜉𝑖)2

]

+ E𝑆
[1
𝑛

𝑛
∑

𝑖=1
𝑔(𝛾, 𝑢,𝑋𝑖, �̄�𝑖)

]

= ‖𝛾†|∇𝑢†| − 𝛾|∇𝑢|‖𝐿2(𝑈 ) + 𝛿
2 + 𝐺(𝛾, 𝑢).

(5.10)

ombining (5.8)(5.9)(5.10) gives

𝑅𝑛(�̃�𝑛, �̃�𝑛)

≤ ‖𝛾†|∇𝑢†| − 𝛾|∇𝑢|‖2
𝐿2(𝑈 )

+ 𝐺(𝛾, 𝑢) + |

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖�̃�𝑛|∇�̃�𝑛|(𝑋𝑖)

]

|

|

|

+ 𝛥𝑛(�̃�𝑛, �̃�𝑛).
(5.11)

tep 2. Now we show

|

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖�̃�𝑛|∇�̃�𝑛|(𝑋𝑖)

]

|

|

|

≤ 1
2
𝑅𝑛(�̃�𝑛, �̃�𝑛) +

8𝛿2(1 + log(𝑁𝛾𝑁𝑢))
𝑛

+ 2(𝛿 + 𝐵𝛾𝐵𝑢)(𝐵𝛾 + 𝐵𝑢)𝜀.

(5.12)

n fact, for estimators (�̃�𝑛, �̃�𝑛) ∈ 𝛾 × 𝑢, there exists 𝑘′ and 𝓁′, such that ‖𝛾𝑘′ − �̃�𝑛‖𝑊 1,∞(𝑈 ) ≤ 𝜀 and ‖𝑢𝓁′ − �̃�𝑛‖𝑊 2,∞(𝑈 ) ≤ 𝜀. Then we
have

|

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖�̃�𝑛|∇�̃�𝑛|(𝑋𝑖)

]

|

|

|

≤ |

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖(�̃�𝑛|∇�̃�𝑛|(𝑋𝑖) − 𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖))

]

|

|

|

+ |

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))

]

|

|

|

≤
2(𝐵𝛾 + 𝐵𝑢)𝛿

𝑛
E𝑆

[

𝑛
∑

𝑖=1
|𝜉𝑖|

]

+ |

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))

]

|

|

|

≤ 2
√

2
𝜋
(𝐵𝛾 + 𝐵𝑢)𝛿𝜀 +

|

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))

]

|

|

|

. (5.13)

et 𝜂𝑘,𝓁 be random variables defined as

𝜂𝑘,𝓁 =
∑𝑛
𝑖=1 𝜉𝑖(𝛾𝑘|∇𝑢𝓁|(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))

(
∑𝑛
𝑖=1(𝛾𝑘|∇𝑢𝓁|(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))2)1∕2

, (5.14)

hen each 𝜂𝑘,𝓁 follows sub-Gaussian distribution 𝗌𝗎𝖻𝖦(𝛿2) conditionally on 𝑆 = {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 ∪{�̄�𝑖}𝑛𝑖=1. By using Cauchy–Schwarz and
AM–GM inequality, we find

|

|

|

E𝑆
[ 2
𝑛

𝑛
∑

𝑖=1
𝜉𝑖(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))

]

|

|

|

≤ 2
𝑛
|

|

|

E𝑆
[(

𝑛
∑

𝑖=1
(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))2

)1∕2
𝜂𝑘′ ,𝓁′

]

|

|

|

≤ 2
𝑛
E𝑆

[

𝑛
∑

𝑖=1
(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))2

]1∕2
E𝑆

[

𝜂2𝑘′ ,𝓁′
]1∕2

≤ 1E𝑆
[ 1

𝑛
∑

(𝛾𝑘′ |∇𝑢𝓁′ |(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))2
]

+ 2E𝑆
[

𝜂2𝑘′ ,𝓁′
]

17

2 𝑛 𝑖=1 𝑛
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≤ 1
2
E𝑆

[ 1
𝑛

𝑛
∑

𝑖=1
(�̃�𝑛|∇�̃�𝑛|(𝑋𝑖) − 𝛾†|∇𝑢†|(𝑋𝑖))2

]

+ 2𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝛿 +
2
𝑛
E𝑆

[

max
𝑘,𝓁

𝜂2𝑘,𝓁
]

≤ 1
2
𝑅𝑛(�̃�𝑛, �̃�𝑛) +

8𝜀2(1 + log𝑁𝛾𝑁𝑢)
𝑛

+ 2𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝛿, (5.15)

here the last inequality is owing to 𝐺𝑛(�̃�𝑛, �̃�𝑛) ≥ 0 and Lemma A.2. Combining (5.13) and (5.15), we obtain (5.12).
tep 3. Using (5.11) and (5.12), we have

𝑅𝑛(�̃�𝑛, �̃�𝑛) ≤ 2(‖𝛾|∇𝑢| − 𝛾†|∇𝑢†|‖2
𝐿2(𝑈 )

+ 𝐺(𝛾, 𝑢)) +
16𝜀2(1 + log(𝑁𝛾𝑁𝑢))

𝑛

+ 4
√

2
𝜋
(𝐵𝛾 + 𝐵𝑢)𝜀𝛿 + 4𝐵𝛾𝐵𝑢(𝐵𝛾 + 𝐵𝑢)𝜀 + 𝛥𝑛(�̃�𝑛, �̃�𝑛),

(5.16)

hich completes the proof. □

roof of Lemma 3.4. Combining Lemmas A.1 and A.3 yields the conclusion. □

.2. The proof of the approximation error bound

emma A.4 (Lipschitz Continuity of Forward Operator). Suppose 𝑓 ∈ 𝐻3∕2(𝜕𝑈 ). Given a function 𝛾, we denote 𝑢(𝛾) the weak solution of

∇ ⋅ (𝛾∇𝑢) = 0, in 𝑈, 𝑇 𝑢 = 𝑓, on 𝜕𝑈.

hen the mapping 𝛾 ↦ 𝑢(𝛾) is Lipschitz continuous from  ∩ 𝐶1(�̄� ) to 𝐻2(𝑈 ), i.e., for any 𝛾, 𝛾 + 𝛿𝛾 ∈  ∩ 𝐶1(�̄� ), there holds

‖𝑢(𝛾 + 𝛿𝛾) − 𝑢(𝛾)‖𝐻2(𝑈 ) ≤ 𝐶Lip𝐵𝑓‖𝛿𝛾‖𝐶1(�̄� ),

here 𝐶Lip is a constant depending on 𝛾0, 𝛾1 and 𝑈 .

roof. Let 𝛿𝑢 = 𝑢(𝛾 + 𝛿𝛾) − 𝑢(𝛾). Then 𝛿𝑢 is the unique solution of

−∇ ⋅ (𝛾∇𝛿𝑢) = ∇ ⋅ (𝛿𝛾∇𝑢(𝛾 + 𝛿𝛾)), in 𝑈, 𝑇 𝛿𝑢 = 0, on 𝜕𝑈.

t is easy to verify that

‖𝛿𝑢‖𝐻2(𝑈 ) ≤ 𝑐1‖∇ ⋅ (𝛿𝛾∇𝑢(𝛾 + 𝛿𝛾))‖𝐿2(𝑈 )

≤ 𝑐1‖𝑢(𝛾 + 𝛿𝛾))‖𝐻2(𝑈 )‖𝛿𝛾‖𝐶1(�̄� )

≤ 𝑐1𝑐2‖𝑓‖𝐻3∕2(𝜕𝑈 )‖𝛿𝛾‖𝐶1(�̄� ),

here 𝑐1, 𝑐2 are constants depending on 𝛾0, 𝛾1 and 𝑈 . □

roof of Lemma 3.5. For each fixed (𝛾, 𝑢) ∈ 𝛾 × 𝑢, recall the definition of the excess risk

𝑅(𝛾, 𝑢) = ‖𝛾|∇𝑢| − 𝛾†|∇𝑢†|‖2
𝐿2(𝑈 )

+ 𝐺(𝛾, 𝑢). (5.17)

e first consider the first term in Eq. (5.17). By triangular inequality and AM–GM inequality, we have

‖𝛾|∇𝑢| − 𝛾†|∇𝑢†|‖2
𝐿2(𝑈 )

≤ 2‖𝛾|∇𝑢| − 𝛾†|∇𝑢|‖2
𝐿2(𝑈 )

+ 2‖𝛾†|∇𝑢| − 𝛾†|∇𝑢†|‖2
𝐿2(𝑈 )

≤ 2𝐵2
𝑢‖𝛾 − 𝛾

†
‖

2
𝐿2(𝑈 )

+ 2𝐵2
𝛾‖𝑢 − 𝑢

†
‖

2
𝐻1(𝑈 )

. (5.18)

e next investigate the second term in Eq. (5.17). Denote by 𝑢𝛾 the solution of

∇ ⋅ (𝛾∇𝑢) = 0, in 𝑈, 𝑇 𝑢 = 𝑓, on 𝜕𝑈.

hen it follows that

𝐺(𝛾, 𝑢) = ‖∇ ⋅ (𝛾∇(𝑢 − 𝑢𝛾 ))‖2𝐿2(𝑈 )
+ ‖𝑇 𝑢 − 𝑇 𝑢𝛾‖2𝐿2(𝜕𝑈 )

≤ 𝐵2
𝛾‖𝑢 − 𝑢𝛾‖

2
𝐻2(𝑈 )

+ 𝐶2
tr‖𝑢 − 𝑢𝛾‖

2
𝐻1(𝑈 )

≤ (𝐵2
𝛾 + 𝐶

2
tr )‖𝑢 − 𝑢𝛾‖

2
𝐻2(𝑈 )

,

here the first inequality is due to the trace theorem, and the constant 𝐶tr only depends on 𝑈 . By Lemma A.4, it holds

‖𝑢𝛾 − 𝑢†‖𝐻2(𝑈 ) ≤ 𝐶Lip𝐵𝑓‖𝛾 − 𝛾†‖𝐶1(�̄� ),

nd consequently,

𝐺(𝛾, 𝑢) ≤ 2(𝐵2
𝛾 + 𝐶

2
tr )𝐶

2
Lip𝐵

2
𝑓‖𝛾 − 𝛾

†
‖

2
𝐶1(�̄� )

+ 2(𝐵2
𝛾 + 𝐶

2
tr )‖𝑢 − 𝑢

†
‖

2
𝐻2(𝑈 )

. (5.19)
18

Combining Eqs. (5.18) and (5.19) completes the proof. □
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Lemma A.5. Let 𝑠 ∈ N+ and 𝜇 > 0. Suppose 𝜚 is an exponential PU-admissible activation function.

(i) For each 𝛾† ∈ 𝐶𝑠+1(�̄� ), there exists a 𝜚-network 𝛾 ∈ 𝜚(𝛾 ,𝛾 ,𝛾 ) such that

‖𝛾 − 𝛾†‖𝐶1(�̄� ) ≤ ‖𝛾†‖𝐶𝑠+1(�̄� ) ⋅ 
− 𝑠−𝜇

𝑑
𝛾 , with 𝛾 = 𝐶 log(𝑑 + 𝑠) and 𝛾 = 𝐶

2𝑠
𝑑 +7
𝛾 .

(ii) For any 𝑢† ∈ 𝐻𝑠+2(𝑈 ), there exists a 𝜚-network 𝑢 ∈ 𝜚(𝑢,𝑢,𝑢) such that

‖𝑢 − 𝑢†‖𝐻2(𝑈 ) ≤ ‖𝑢†‖𝐻𝑠+2(𝑈 ) ⋅ 
− 𝑠+1−𝜇

𝑑
𝑢 , with 𝑢 = 𝐶 log(𝑑 + 𝑠 + 1) and 𝑢 = 𝐶

2𝑠+2
𝑑 +7

𝑢 .

Here 𝐶 is a constant depending on 𝑑, 𝑠, 𝜇 and 𝑈 .

roof. A direct conclusion of Proposition 4.8 in [18]. □

roof of Lemma 3.7. Combining Lemmas 3.5 and A.5 yields the desired result. □

.3. The proof of the statistical error bound

emma A.6. Let 𝑚 ∈ N and 𝑈 ⊆ [0, 1]𝑑 be a domain. For each neural network 𝜙 ∈ 𝜚( , ,), we have 𝜙 ∈ 𝐶𝑚(�̄� ) and

‖𝜙‖𝐶0(�̄� ) = (𝑁max), ‖𝜙‖𝐶1(�̄� ) = (𝑁
max

),

‖𝜙‖𝐶2(�̄� ) = (𝑁(2+1)
max (+1)),

‖𝜙‖𝐶3(�̄� ) = (𝑁(22+2+1)
max (32+3+1)),

here 𝑁max = max{𝑁𝓁 ∶ 𝓁 = 0,… ,}.

roof. Recall the definition of the neural network 𝜙:

𝜙0(𝑥) = 𝑥,

𝜙𝓁(𝑥) = 𝜚(𝑇(𝜙𝓁−1(𝑥))), 𝓁 = 1,… , − 1,

𝜙(𝑥) = 𝑇(𝜙−1(𝑥)).

et 𝜚,𝑖 (𝑖 = 0, 1, 2, 3) be the bounds of the activation function 𝜚 and its derivatives, i.e., |𝜚(𝑥)| ≤ 𝜚,0, |𝜚′(𝑥)| ≤ 𝜚,1, |𝜚′′(𝑥)| ≤ 𝜚,2
nd |𝜚′′′(𝑥)| ≤ 𝜚,3, for each 𝑥 ∈ �̄� . Then it holds

|𝜙(𝑥)| ≤ 𝑁𝜚,0.

et 𝜙𝓁(𝑥) = (𝜙1
𝓁(𝑥),… , 𝜙𝑁𝓁+1

𝓁 (𝑥)), then we deduce

𝜕𝑥𝑞𝜙
𝑚
𝓁 (𝑥) =

𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑞𝜙

𝑖
𝓁−1(𝑥), for 1 ≤ 𝑞 ≤ 𝑑,

nd consequently,

|𝜕𝑥𝑞𝜙
𝑚
𝓁 (𝑥)| ≤ 𝑁𝓁𝜚,1 max

1≤𝑖≤𝑁𝓁
|𝜕𝑥𝑞𝜙

𝑖
𝓁−1(𝑥)|, for 1 ≤ 𝑞 ≤ 𝑑.

enote 𝐵𝓁,1 = max𝑚 sup𝑥∈�̄� |𝜕𝑥𝑞𝜙
𝑚
𝓁 (𝑥)|, we have

𝐵𝓁,1 ≤
(

𝓁
∏

𝑖=1
𝑁𝑖

)

𝓁𝓁
𝜚,1 ≤ 𝑁𝓁

max
𝓁𝓁

𝜚,1 and sup
𝑥∈�̄�

|𝜕𝑥𝑝𝜙(𝑥)| ≤ 𝑁
max


𝜚,1. (5.20)

e next consider the bound of 𝜕𝑥𝑞 𝜕𝑥𝑝𝜙
𝑚
𝓁 (𝑥). It is easy to show that

𝜕𝑥𝑞 𝜕𝑥𝑝𝜙
𝑚
𝓁 (𝑥) = 𝜕𝑥𝑞

(

𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)

)

=
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜕𝑥𝑞

{

𝜚′(𝜙𝑖𝓁−1(𝑥))
}

𝜕𝑥𝑝𝜙
𝑖
𝓁−1(𝑥) +

𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑞 𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)

=
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑞𝜙

𝑖
𝓁−1(𝑥)𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥) +

𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑞 𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥).

hus for 1 ≤ 𝑝, 𝑞 ≤ 𝑑, we have

|𝜕𝑥 𝜕𝑥 𝜙
𝑚(𝑥)| ≤ 𝑁𝓁𝜚,2𝐵2 +𝑁𝓁𝜚,1 max |𝜕𝑥 𝜕𝑥 𝜙

𝑖 (𝑥)|.
19

𝑞 𝑝 𝓁 𝓁−1,1 1≤𝑖≤𝑁𝓁
𝑞 𝑝 𝓁−1
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Then using Eq. (5.20) gives

𝐵𝓁,2 ≲ 𝑁
𝓁
max

(

𝓁
∏

𝑖=1
𝐵2
𝑖,1

)

𝓁(𝜚,1𝜚,2)𝓁 ≲ 𝑁𝓁(2𝓁+1)
max 𝓁(𝓁+1)𝓁(𝓁+1)

𝜚,1 𝓁
𝜚,2, (5.21)

and

|𝜕𝑥𝑞 𝜕𝑥𝑝𝜙(𝑥)| ≲ 𝑁
(2+1)
max (+1)(+1)

𝜚,1 
𝜚,2.

Similarly, we now bound 𝜕𝑥𝑟𝜕𝑥𝑞 𝜕𝑥𝑝𝜙
𝑚
𝓁 (𝑥). It follows that

𝜕𝑥𝑟𝜕𝑥𝑞 𝜕𝑥𝑝𝜙
𝑚
𝓁 (𝑥)

=
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜕𝑥𝑟

{

𝜚′′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑞𝜙
𝑖
𝓁−1(𝑥)𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)

}

+
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜕𝑥𝑟

{

𝜚′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑞 𝜕𝑥𝑝𝜙
𝑖
𝓁−1(𝑥)

}

=
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′′′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑟𝜙

𝑖
𝓁−1(𝑥)𝜕𝑥𝑞𝜙

𝑖
𝓁−1(𝑥)𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)

+
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′′(𝜙𝑖𝓁−1(𝑥))

{

𝜕𝑥𝑟𝜕𝑥𝑞𝜙
𝑖
𝓁−1(𝑥)𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥) + 𝜕𝑥𝑞𝜙

𝑖
𝓁−1(𝑥)𝜕𝑥𝑟𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)

}

+
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑟𝜙

𝑖
𝓁−1(𝑥)𝜕𝑥𝑞 𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)

+
𝑁𝓁
∑

𝑖=1
𝐴𝑚,𝑖𝓁 𝜚′(𝜙𝑖𝓁−1(𝑥))𝜕𝑥𝑟𝜕𝑥𝑞 𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥).

Hence

|𝜕𝑥𝑟𝜕𝑥𝑞 𝜕𝑥𝑝𝜙
𝑚
𝓁 (𝑥)|

≤ 𝑁𝓁𝜚,3𝐵3
𝓁−1,1 + 3𝑁𝓁𝜚,2𝐵𝓁−1,1𝐵𝓁−1,2 +𝑁𝓁𝜚,1 max

1≤𝑖≤𝑁𝓁
|𝜕𝑥𝑟𝜕𝑥𝑞 𝜕𝑥𝑝𝜙

𝑖
𝓁−1(𝑥)|.

Then we have for 1 ≤ 𝑝, 𝑞, 𝑟 ≤ 𝑑

sup
𝑥∈�̄�

|𝜕𝑥𝑟𝜕𝑥𝑞 𝜕𝑥𝑝𝜙(𝑥)| ≲ 𝑁

max

(


∏

𝓁=1
𝐵3
𝓁,1 +


∏

𝓁=1
𝐵𝓁,1𝐵𝓁,2

)

(𝜚,1𝜚,2𝜚,3)

≲ 𝑁(22+2+1)
max (32+3+1)(32+3+1)

𝜚,1 (+1)
𝜚,2 

𝜚,2.

his completes the proof. □

emma A.7 (Extension). Let 𝑚 ∈ N and 𝑈 ⊂⊂ (0, 1)𝑑 be a domain with 𝐶∞-boundary. Then for each 𝜓 ∈ 𝐶𝑚(�̄� ), there exists a bounded
nd compact support extension 𝐸𝜓 ∈ 𝐶𝑚0 ([0, 1]

𝑑 ), such that

(i) 𝐸𝜓(𝑥) = 𝜓(𝑥) in �̄� ,
(ii) ‖𝐸𝜓‖𝐶𝑚([0,1]𝑑 ) ≤ 𝐶‖𝜓‖𝐶𝑚(�̄� ),

here 𝐶 is a constant depending only on 𝑈 .

roof. For each function 𝜓 ∈ 𝐶𝑚(�̄� ), by Theorem 5.24 [27], there exists 𝐸1𝜓 ∈ 𝐶𝑚([0, 1]𝑑 ). Let 𝜁 ∈ 𝐶𝑚0 ([0, 1]
𝑑 ) be a cut-off function

uch that

(i) 0 ≤ 𝜁 (𝑥) ≤ 1 for each 𝑥 ∈ [0, 1]𝑑 ,
(ii) 𝜁 (𝑥) = 1 for each 𝑥 ∈ �̄� , and

(iii) |𝜕𝛼𝜁 | ≤ 𝐶∕(dist(𝑈, 𝜕(0, 1)𝑑 ))|𝛼|.

hen 𝐸𝜓 ∶= 𝜁𝐸1𝜓 ∈ 𝐶𝑚0 ([0, 1]
𝑑 ) is the desired function of 𝜓 . The proof is completed. □

emma A.8. Let 𝑈 ⊂⊂ (0, 1)𝑑 be a domain with 𝐶∞-boundary. Let 𝑘, 𝑠 ∈ N with 𝑘 < 𝑠, and 𝑠𝐵 be the norm-ball of radius 𝐵 in 𝐶𝑠(�̄� ).
hen

𝐻(𝜀,𝑠𝐵 , 𝐶
𝑘(�̄� ) ≤ 𝐶 ⋅

(𝐵
𝜀

)
𝑑
𝑠−𝑘 ,

where 𝐶 is a constant depending on 𝑠, 𝑘 and 𝑈 .
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Proof. Notice that
{

𝜕𝛼𝑓 ∶ 𝑓 ∈ 𝑠𝐵 , |𝛼| = 𝑘
}

⊆ 𝑠−𝑘𝐵 .

et 𝑠−𝑘𝐵,𝜀 be a ‖ ⋅ ‖𝐶(�̄� ) 𝛿-cover of 𝑠−𝑘𝐵 with |𝑠−𝑘𝐵,𝜀 | = 𝑁(𝛿,𝑠−𝑘𝐵 , 𝐶(�̄� )). Then for each 𝑓 ∈ 𝑠𝐵 and 𝛼 = (𝛼1,… , 𝛼𝑑 ) with |𝛼| = 𝑘, there
xist 𝜋𝛼(𝑓 ) ∈ 𝑠−𝑘𝐵,𝜀 such that

‖𝜋𝛼(𝑓 ) − 𝜕𝛼𝑓‖𝐶(�̄� ) ≤ 𝛿. (5.22)

ithout loss of generality, we assume 𝛼𝑗 ≥ 1, and define

𝐹 (𝑥1,… , 𝑥𝑑 ) = ∫

𝑥𝑗

𝑥𝑗,0
𝜋𝛼(𝑓 )(𝑥1,… , 𝑥𝑗−1, 𝑧, 𝑥𝑗+1,… , 𝑥𝑑 )𝑑𝑧,

where 𝑥𝑗,0 = min{𝑥𝑗 ∶ (𝑥1,… , 𝑥𝑗 ,… , 𝑥𝑑 ) ∈ �̄�}. It is clear that 𝜕𝑗𝐹 = 𝜋𝛼(𝑓 ). Denote �̄� = (𝛼1,… , 𝛼𝑗 − 1,… , 𝛼𝑑 ). By Lemma A.7, there
exist an extension 𝐸(𝐹 − 𝜕�̄�𝑓 ) ∈ 𝐶1

0 ([0, 1]
𝑑 ), such that 𝐸(𝐹 − 𝜕�̄�𝑓 )(𝑥) = (𝐹 − 𝜕�̄�𝑓 )(𝑥) for each 𝑥 ∈ �̄� , and consequently

‖𝐹 − 𝜕�̄�𝑓‖𝐶(�̄� ) ≤ ‖𝐸(𝐹 − 𝜕�̄�𝑓 )‖𝐶([0,1]𝑑 ). (5.23)

Using Poincaré’s inequality, we have

‖𝐸(𝐹 − 𝜕�̄�𝑓 )‖𝐶([0,1]𝑑 ) ≤ 𝐶‖𝜕𝑗𝐸(𝐹 − 𝜕�̄�𝑓 )‖𝐶([0,1]𝑑 ) = 𝐶‖𝐸(𝜋𝛼(𝑓 ) − 𝜕𝛼𝑓 )‖𝐶([0,1]𝑑 ), (5.24)

here 𝐸 is an extension operator, satisfying 𝐸(𝜋𝛼(𝑓 ) − 𝜕𝛼𝑓 ) ∈ 𝐶0([0, 1]𝑑 ) and

‖𝐸(𝜋𝛼(𝑓 ) − 𝜕𝛼𝑓 )‖𝐶([0,1]𝑑 ) ≤ 𝐶‖𝜋𝛼(𝑓 ) − 𝜕𝛼𝑓‖𝐶(�̄� ), (5.25)

here 𝐶 is a constant depending on 𝑈 . Here the existence of 𝐸 can be guaranteed by Lemma A.7. Combining Eqs. (5.22)–(5.25)
ields

max
{

‖𝐹 − 𝜕�̄�𝑓‖𝐶(�̄� ), ‖𝜕𝑗 (𝐹 − 𝜕�̄�𝑓 )‖𝐶(�̄� )

}

≤ 𝐶‖𝜋𝛼(𝑓 ) − 𝜕𝛼𝑓‖𝐶(�̄� ) ≤ 𝐶𝛿,

here 𝐶 is a constant depending on 𝑈 .
Repeating the same procedure as above, we can construct a function 𝜋(𝑓 ) ∈ 𝐶𝑘(�̄� ), such that

max
0≤|𝛼|≤𝑘

‖𝜕𝛼(𝜋(𝑓 ) − 𝑓 )‖𝐶(�̄� ) ≤ 𝐶𝛿,

hich means 𝑠𝐵,𝜀 ∶= {𝜋(𝑓 ) ∶ 𝑓 ∈ 𝑠𝐵} is a ‖ ⋅ ‖𝐶𝑘(�̄� ) 𝐶𝛿-cover of 𝑠𝐵 satisfying |𝑠𝐵,𝜀| = |𝑠−𝑘𝐵,𝜀 |. Then

𝑁(𝐶𝛿,𝑠𝐵 , 𝐶
𝑘(�̄� )) ≤ 𝑁(𝛿,𝑠−𝑘𝐵 , 𝐶(�̄� )).

etting 𝜀 = 𝐶𝛿 and by Theorem 4.3.36 in [13], we complete the proof. □

roof of Lemma 3.8. It is sufficient to estimate the metric entropy of the following function classes:

(i) 𝛾 = 𝜚(𝛾 , ,𝛾 ) with 𝛾 = 𝐶 log(𝑑 + 𝑠) and 𝛾 = 𝐶
2𝑠
𝑑 +7, and

(ii) 𝑢 = 𝜚(𝑢, ,𝑢) with 𝑢 = 𝐶 log(𝑑 + 𝑠 + 1) and 𝑢 = 𝐶
2𝑠+2
𝑑 +7.

By Lemma A.6, we have

𝛾 ⊆ 2
𝐵𝛾
, with 𝐵𝛾 = (𝑁𝛾 (2𝛾+1)

𝛾,max 𝛾 (𝛾+1)
𝛾 ), (5.26)

and

𝑢 ⊆ 3
𝐵𝑢
, with 𝐵𝑢 = (𝑁𝑢(22

𝑢+2𝑢+1)
𝑢,max 𝑢(32

𝑢+3𝑢+1)
𝑢 ). (5.27)

onsequently, we have

𝐻(𝜀,𝛾 , ‖ ⋅ ‖𝑊 1,∞(𝑈 )) ≤ 𝐻(𝜀,2
𝐵𝛾
, ‖ ⋅ ‖𝑊 1,∞(𝑈 )), (5.28)

nd

𝐻(𝜀,𝑢, ‖ ⋅ ‖𝑊 2,∞(𝑈 )) ≤ 𝐻(𝜀,3
𝐵𝑢
, ‖ ⋅ ‖𝑊 2,∞(𝑈 )). (5.29)

pplying Lemma A.8 and (5.26) and (5.27) yields

𝐻(𝜀,𝛾 , ‖ ⋅ ‖𝑊 1,∞(𝑈 )) ≤ 𝐶 ⋅
(𝑁

𝛾 (2𝛾+1)
𝛾,max 𝛾 (𝛾+1)

𝛾

𝜀

)𝑑
, and

𝐻(𝜀,𝑢, ‖ ⋅ ‖𝑊 2,∞(𝑈 )) ≤ 𝐶 ⋅
(𝑁𝑢(22

𝑢+2𝑢+1)
𝑢,max 𝑢(32

𝑢+3𝑢+1)
𝑢

𝜀

)𝑑
.
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S

Substituting 𝑁𝛾,max ≤  and 𝑁𝑢,max ≤  gives

max
{

𝐻𝜀
𝛾 ,𝐻

𝜀
𝑢
}

≲ (6(4𝑑+𝑠+1) log3(𝑑+𝑠+1)𝜀−𝑑 ). (5.30)

etting

𝜀 =
( 𝐵2

𝛾𝐵
2
𝑢 + 𝐵

2
𝑓 + 𝛿2

(𝛿 + 𝐵𝛾𝐵𝑢)(𝐵𝛾 + 𝐵𝑢)
6(4𝑑+𝑠+1) log3(𝑑+𝑠+1)

𝑛

)
1
𝑑+1

and letting 𝑚 = 𝑠 + 1 yield the desired result. □
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